
Object Detection and Segmentation
using Fisheye Images

Theodora Gaiceanu and Felix Slothower

Department of Mathematics



MSc Thesis TFRT-9999
ISSN 0280–5316

Department of Mathematics
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2023 by Theodora Gaiceanu and Felix Slothower. All rights reserved.
Printed in Sweden by Media-Tryck.
Lund 2023



Abstract

As computer vision becomes widely adopted, more applications demand a large ef-
fective field of view, something which is aptly accommodated by fisheye cameras.
Autonomous driving vehicles, for example, require a full panorama view of their en-
vironment in order to navigate effectively. This requirement could be satisfied with
as few as four fisheye cameras, one on each side of the car. However, due to the ir-
regular compression of information at the edges of a fisheye distorted image, such a
configuration is not well adapted for the convolutional neural networks traditionally
used for computer vision tasks.

Rather than install more cameras with less severe distortion but who’s field of
view is significantly worse, we propose the use of tiled image rectification. Standard
image rectification typically results in some of the field of view being cropped to
maintain a consistent scale with respect to the center of the image. Tiling the rectifi-
cation at different angles across the scene allows for the field of view to be preserved
while still removing distortion. Using this method, we saw a significant improve-
ment (mAP of 0.417 compared to mAP 0.318) over processing the distorted fisheye
image while still observing the same field of view. We also tested traditional rectifi-
cation and cylindrical rectification, both of which performed poorly with respect to
the tiling and unprocessed methods.

3





Acknowledgements

This thesis project was carried out in the Spring of 2023 and hosted by Axis Com-
municatons AB. Originally intended as research concerning specific design chal-
lenges for one of Axis’ clients, the project later evolved into a self-motivated study
of the topic.

We would like to thank our supervisors at Axis, namely;

Angelo Delli Santi
Mikael Lindberg (currently at Saab)
Niclas Svensson
Anton Jakobsson

We would also like to thank our academic supervisors;

Senior Lecturer Mikael Nilsson
Assistant Professor Viktor Larsson
Professor Bo Bernhardsson

We appreciated all the help given by our supervisors, including their challenging
suggestions. The time we spent during our meetings with them helped us improve
our project, analyze our results better, and motivated us to give our best.

We would like to extend a special thanks to Maria Henningsson for her feedback
and support, as well as to Linh Trang who supported us in the beginning of our
thesis.

Theodora. I want to mention Felix for being an amazing thesis partner. I also
appreciated very much the help, advice, and availability of the people from the
university and from the company. I would like to thank my whole family for the
love, support, and patience they had for me. Big thanks to my parents for always
dreaming big towards my future and for encouraging me to achieve my goals. I
want to also thank my husband-to-be for his love, encouragements, and for making
me laugh when I needed it. Last but not least, I would like to express my gratitude
to Professor Octavian Pastravanu from "Gheorghe Asachi" Technical University of
Iasi, Romania for encouraging me to do a Master’s Programme abroad.

5



Felix. First, a big thanks to my thesis partner Theodora, with whom it was al-
ways a pleasure to work with. I would also like to give thanks to our advisors, both
at the university and at Axis, for thinking critically about our challenges and of-
fering valuable feedback. I would also like to make a gesture of gratitude towards
the departments of Mathematics, and of Controls at LTH. My interactions with the
lecturers and professors were always very positive, and I appreciated the sense of
community within their faculty.

6



Contents

1. Introduction 9
1.1 Aim of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Fisheye Images . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 WoodScape Dataset . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Analysis of the WoodScape Dataset . . . . . . . . . . . . . . . . 12
1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 20

2. Background 21
2.1 Object Detection with YOLO . . . . . . . . . . . . . . . . . . . 21
2.2 Object Detection for Fisheye Datasets . . . . . . . . . . . . . . 26
2.3 Semantic Segmentation for Fisheye Datasets . . . . . . . . . . . 30
2.4 Amazon Web Services Elastic Compute Cloud . . . . . . . . . . 31

3. Methods 32
3.1 4th-Order Polynomial Mapping . . . . . . . . . . . . . . . . . . 32
3.2 Cylindrical Mapping . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Rectilinear Mapping . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Tiled Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Intersection over Union (IoU) . . . . . . . . . . . . . . . . . . . 37
3.6 Mean Average Precision (mAP) . . . . . . . . . . . . . . . . . . 38
3.7 F1 Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4. Object Detection 39
4.1 Making WoodScape Compatible with YOLOv5 . . . . . . . . . 39
4.2 Conversion of the Bounding Box Coordinates . . . . . . . . . . 41
4.3 Original Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Cylindrical Rectification . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Rectilinear Rectification . . . . . . . . . . . . . . . . . . . . . . 54

5. Semantic Segmentation 59
5.1 Pre-Processing the Annotations . . . . . . . . . . . . . . . . . . 59
5.2 Original Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Cylindrical Rectification . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Rectilinear Rectification . . . . . . . . . . . . . . . . . . . . . . 74

7



CONTENTS

5.5 Analysis of Segmentation Results . . . . . . . . . . . . . . . . . 79
5.6 Fair Model Comparison . . . . . . . . . . . . . . . . . . . . . . 83

6. Tiled Rectification 87
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Adapting the Annotations . . . . . . . . . . . . . . . . . . . . . 88
6.3 YOLO Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4 Tile Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7. Conclusion and Discussion 98
7.1 Summary of Experiments . . . . . . . . . . . . . . . . . . . . . 98
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography 105

8



1
Introduction

This chapter introduces the aim of the thesis and provides some details about fisheye
images and the dataset used for this project. Lastly, the structure of the thesis is
explained.

1.1 Aim of the Thesis

This thesis project aims to find improved methods of object detection and segmen-
tation when using fisheye distorted images as input. The advantage of using wide-
angle cameras over their conventional counterparts, is that the scene can be fully
observed with a minimal number of sensors. However, in general, the performance
of convolutional neural networks (CNN) on the distorted images is worse than the
performances of the same model applied to standard images. This is because fisheye
cameras introduce a significant nonlinear distortion, something which is not well
suited for the translational invariance characteristics of conventional CNNs [1].

To combat this, most current implementations rectify the distorted image before
being fed into an object detection network (e.g. rectilinear correction, piece-wise
linear correction, cylindrical correction [1]). Image rectification has its issues, both
decreasing the original field of view (FOV) and introducing resampling distortion
[1]. We seek to explore methods which keep the original, wider FOV and that obtain
better results than a classical model trained on fisheye images.

1.2 Fisheye Images

The first person to use the term fisheye was the physicist and inventor Robert W.
Wood [2]. The term is related to the Snell’s window phenomenon, which describes
the 180° view of the world above water that a fish has when looking up towards the
surface [2], [3]. An example of the phenomenon can be seen in Figure 1.1. Robert
W. Wood also built a very simple fisheye camera which was based on a pin-hole
camera filled with water.

9



Chapter 1. Introduction

Figure 1.1 The image is illustrative for the Snell’s window phenomenon. The picture is taken
from below the water surface, making the diver appear inside of the window [4].

As such, fisheye cameras are wide-angle cameras, some of them having a field
of view (FOV) of around 180° or more [5]. This feature led the fisheye camera to
be used in several computer vision applications, such as; generation of panoramic
images [6], creating image-based virtual reality [7], self-localization problems [8],
autonomous driving [9]. However, by the same token, the distortion introduced by
the fisheye lenses introduces unique challenges when processing the 2D image [7],
[1].

For the purposes of this project, the fisheye distortion was modeled using a
fourth order polynomial. A high level illustration of the rectification process for a
single image is provided in Figure 1.2, with supporting equations provided in Sec-
tion 3.1. The key takeaway from these diagrams can be found in Figure 1.2b, where
we see a non-linear relationship as angle θ increases between ρ and χ , plotted on
polar coordinates. When θ is small, ρ and χ are nearly similar, representing little
distortion at the center of fisheye image. But as theta increases, the deviation be-
tween ρ and χ represents the distortion seen at the far-periphery of a fisheye image.
Examples of these images can be found in Figures 1.4 and 1.3.

10



1.3 WoodScape Dataset

(a) (b) (c)

Figure 1.2 Working from left to right, the rectification process, as parameterized in our
project, has been illustrated. In the leftmost diagram, the 2D image is first projected to 3D
and angle θ is measured for a given 3D pixel. In the middle diagram, a new radius ρ is cal-
culated as a function of θ . Finally, the 3D pixel is projected back to 2D according to the ratio
between χ and ρ as illustrated in the right diagram.

1.3 WoodScape Dataset

In our thesis, we use a public dataset for our experiments, called WoodScape [1].
According to the authors, WoodScape is the first fisheye dataset for autonomous
driving. The dataset was extracted from four fisheye cameras offering a full 360◦

field of view (FOV). Figure 1.3 shows the orientation of the four cameras: front view
(FV), rear view (RV), mirror view left (MVL), and mirror view right (MVR). All the
images have the size 1280×966. Also, the dataset can be used for nine different ap-
plications, like object detection, segmentation, depth estimation, soiling detection.
WoodScape has approximately 10,000 images and annotations for semantic seg-
mentation and over 100,000 images and annotations for the other applications. The
dataset contains annotations for both 2D and 3D bounding boxes, but we used only
the 2D bounding boxes. Some samples from the datasets and possible applications
are pictured in Figure 1.4.

A radial mapping function r(θ) was used to model the fisheye distortion, where
r is the distance on the image from the centre of distortion, θ being the angle of
the incident ray against the optical axis of the camera. The centre of distortion is
defined as the place of intersection between the optical axis and the image plane,
being at the same time the origin of the radial mapping function r(θ) [1].

The authors also provided a distortion correction method which uses a fourth
order polynomial to model the fisheye distortion. The polynomial coefficients are
provided for each camera angle to account for slight inconsistencies in the optics of
each lens. The fourth order polynomial and supplementary equations can be found
in Section 3.1.

11



Chapter 1. Introduction

Figure 1.3 Placement of the four fisheye cameras that collected images from WoodScape
dataset [1]

Figure 1.4 Image samples and possible application of WoodScape [1]

1.4 Analysis of the WoodScape Dataset

1.4.1 Objects in the Ground Truth
In order to better understand the performances of a model, it is important to evaluate
how complex the problem is. Knowing the number of objects from the ground truth
can help in this sense.

As the processed annotation files have as many lines as number of objects for
both detection and segmentation tasks, an easy way to get the total number of ob-
jects in one image is to count the lines in its corresponding annotation file. For each
task, one can make a dictionary having the name of the images as keys and the num-
ber of objects as value. The dictionary can be further processed in order to get the
maximum number of objects in one image and the average number of objects for
each task.

• Object detection with the original fisheye images

The average number of objects per image for object detection with the orig-
inal fisheye images is 8.75, while the maximum number of objects is 35.

12



1.4 Analysis of the WoodScape Dataset

The corresponding picture for the maximum number of objects can be seen
in Figure 1.7.

• Object detection with the cylindrical corrected images

The average number of objects per image for object detection with cylindrical
corrected images is 8.75, while the maximum number of objects is 35. The
corresponding picture for the maximum number of objects can be seen in
Figure 1.8.

• Object detection with the rectilinear corrected images

The average number of objects per image for object detection with rectilinear
corrected images is 4.88, while the maximum number of objects is 26. The
corresponding picture for the maximum number of objects can be seen in
Figure 1.9.

Figure 1.5 Violin plot showing the distribution of object counts in every image for the three
object detection datasets used.

• Semantic segmentation with the original fisheye images

The average number of objects per image for semantic segmentation with
the original fisheye images is 46.42, while the maximum number of objects
is 173. The corresponding picture for the maximum number of objects can be
seen in Figure 1.10.

• Semantic segmentation with the cylindrical corrected images

The average number of objects per image for semantic segmentation with the
cylindrical corrected images is 44.78, while the maximum number of objects
is 169. The corresponding picture for the maximum number of objects can be
seen in Figure 1.11.

• Semantic segmentation with the rectilinear corrected images

The average number of objects per image for semantic segmentation with the
rectilinear corrected images is 30.77, while the maximum number of objects

13



Chapter 1. Introduction

is 133. The corresponding picture for the maximum number of objects can be
seen in Figure 1.12.

Figure 1.6 Violin plot showing the distribution of object counts in every image for the three
segmentation datasets used.

Figure 1.7 The fisheye image with the maximum number of objects for detection

14



1.4 Analysis of the WoodScape Dataset

Figure 1.8 The cylindrical corrected image with the maximum number of objects for detec-
tion

Figure 1.9 The rectilinear corrected image with the maximum number of objects for detec-
tion

15



Chapter 1. Introduction

Figure 1.10 The fisheye image with the maximum number of objects for segmentation

Figure 1.11 The cylindrical corrected image with the maximum number of objects for seg-
mentation

1.4.2 Labelling Problems
When analyzing the dataset, we noticed that there are some missing annotations.
It is unclear why this happened, but, for instance, there are people in the pictures

16



1.4 Analysis of the WoodScape Dataset

Figure 1.12 The rectilinear corrected image with the maximum number of objects for seg-
mentation

that are not annotated. This has a negative impact on the detection and segmentation
results, making the model more prone to classify objects as background.

Some examples of bad annotations can be seen in Figure 1.13 (inside the red
rectangles). All the images have people that are not annotated accordingly, and Fig-
ures 1.13b and 1.13c have also some missing traffic signs. From a brief manual
analysis of 20 randomly selected images, it was found that on average, 3.40 objects
were missing a ground truth annotation per image. With respect to the average num-
ber of ground truth objects in each image, as discussed in the previous section, there
is roughly a miss-annotation rate of 39%.

There are also certain edge cases where the existence of an object is not clear,
either due to low resolution or occlusion. However, in spite of this low confidence,
labeling may still be preferred as the model is ideally sensitive to cases where par-
tially occluded humans are detected before walking in front of the ego vehicle like
in Figure 1.14. This partially occluded person should be annotated, even if the anno-
tator is not entirely sure whether it is truly a person or not. These are the edge cases
that, when properly annotated, will make for safer autonomous driving. In the case
of the referenced image, the person marked in red was not included in the ground
truth.

17



Chapter 1. Introduction

(a) (b)

(c)

Figure 1.13 Examples of poor annotations from WoodScape. Bounding boxes in green are
provided in the original dataset, while bounding boxes in red are missed instances of a partic-
ular class. Missed annotations in the ground truth can send mixed signals to the model during
training and result in an overall worse performance.

18



1.4 Analysis of the WoodScape Dataset

Figure 1.14 Notice the partial occlusion of a person near the top left of the image, standing
behind the large truck. Because the object is small and occluded, we cannot be completely
sure of what it is. However, from experience many drivers will naturally assume this could
be a person, since often people are found moving things out the back of an open cargo truck.

19



Chapter 1. Introduction

1.5 Structure of the Thesis

The thesis is structured as follows:

Chapter 2: Explains the model that we used for training, introduces the state
of the art approaches for detection and segmentation with fisheye
images, and presents the software resources.

Chapter 3: Introduces theoretical notions used when implementing the rectifica-
tions and presents the considered metrics for evaluating the perfor-
mance of our models.

Chapter 4: Shows the object detection results for the models using the fisheye,
cylindrical and rectilinear corrected images.

Chapter 5: Shows the semantic segmentation results for the models using the
fisheye, cylindrical and rectilinear corrected images. The chapter
also includes an analysis of the segmentation results.

Chapter 6: Presents the segmentation results for the model using the tiled recti-
fication.

Chapter 7: Contains the discussion and conclusions of our project, as well as
some ideas for future work.

20



2
Background

This chapter explains what object detection and segmentation is, presents the You
Only Look Once (YOLO) algorithm [10] that is used in our thesis for performing
the object detection and segmentation tasks, and lists state of the art approaches for
these tasks when having at input fisheye images. Finally, there is a short description
of the virtual machine used to carry out the experiments.

2.1 Object Detection with YOLO

Object detection describes the task of localizing and classifying instances of dif-
ferent classes in digital images [11], [12]. The output is typically composed of the
predicted class and a pair of coordinates for the bounding box that contains the
instance [11], [12].

You Only Look Once (YOLO) is an object detection algorithm that gained a lot
of popularity for being both fast and robust [13], [14]. For these reasons, we chose
to use YOLO in our thesis. The detection problem is seen as a single regression
problem, unlike other systems, like R-CNN [15], that have one part predicting the
bounding boxes and another performing the classification task on these boxes. In
short, YOLO first rescales the input image, then uses a convolutional neural network
to predict the bounding boxes and the class probabilities, and applies non-maximum
suppression in the end [10].

YOLO has the ability to embed contextual information, unlike R-CNN, which
has limited information about the context [15]. Also, YOLO can predict at the same
time the bounding boxes for all classes in an image [10].

2.1.1 First Version of YOLO
In the initial version of YOLO [10], the input image is down-sampled to 448×448
pixels. The algorithm applies an N ×N grid on the input image where N is the
number of gridlines. The grid cell that contains the center of an object is the one in
charge of detecting that object. Also, every grid cell predicts B bounding boxes and
their corresponding confidence. The confidence is calculated as the IoU between

21



Chapter 2. Background

the predicted box and ground truth, and is zero if no objects exist in the cell. The
predicted output has the following form: [x,y,w,h,con f ], where (x,y) are the center
coordinates of the bounding box w.r.t. the associated grid cell boundaries, w,h are
the width and height represented as a fraction of the original image dimensions and
finally con f is the confidence score. In addition to these five output values, every
grid cell also gives C conditional class probabilities, P(Classi|Ob ject). A single set
of class probabilities is predicted for each grid cell, no matter what is the number of
bounding boxes B. One final step is to compute the class-specific confidence score
for every box. This is done by multiplying the conditional class probabilities and
the individual box confidence scores, as it can be seen in Equation 2.1

P(Classi|Ob ject)∗P(Ob ject)∗ IOU truth
pred = P(Classi)∗ IOU truth

pred . (2.1)

Figure 2.1 summarizes the detection process.

Figure 2.1 Detection process in YOLO [10]

The model consists of 24 convolutional layers extracting the features from the
input image and 2 fully connected layers predicting the bounding box coordinates
and output probabilities [10]. The model is based on GoogLeNet [16], an image
classification model. A key difference, however, is that the inception modules of
GoogLeNet were replaced by 1×1 reduction layers and 3×3 convolutional layers.
Figure 2.2 presents the architecture of YOLO.

The authors pretrained the convolutional layers on the ImageNet classification
dataset [17] using 224× 224 pixel input images. The model is then modified for
detection, the input resolution is increased to 448×448 pixels and final training is
carried out.

2.1.2 Second Version of YOLO
The authors then developed YOLOv2 [18], an improved version of YOLO. They
added batch normalization for every convolutional layer in YOLO. In addition, the

22



2.1 Object Detection with YOLO

Figure 2.2 A schematic overview of the architecture of YOLO [10]

model was pretrained with higher resolution classifiers, using 448×448 pixel input
images. Moreover, the fully connected layers in YOLO were replaced with anchor
boxes. This change implied that the model predicted the class and objectness (con-
fidence) for each anchor box.

The anchor boxes are basically priors for the bounding boxes. In order to find
suitable priors, the authors performed k-means clustering on the dimensions of the
bounding boxes from the training data. From multiple experiments, the authors
found that a suitable value for k was 5 [18]. In other words, k-means is used to
cluster the ground truth bounding boxes from the training set and determine the
optimal set of anchor boxes to be used.

The location coordinates for the bounding boxes are generated relative to the
grid cell center. Assuming one has the (cx,cy) cell offset from the upper left corner
of the image, the anchor boxes pw, ph, and the 5 coordinates tx, ty, tw, th, to predicted
by the network, then the predicted bounding box coordinates, dimensions, and con-
fidence score are computed as

bx = σ(tx)+ cx, (2.2)

by = σ(ty)+ cy, (2.3)

bw = pwetw , (2.4)

bh = pheth , (2.5)

and

P(Ob ject)∗ IOU(b,Ob ject) = σ(to), (2.6)

23



Chapter 2. Background

where σ is the sigmoid function. The computations are also illustrated in Figure
2.3.

Figure 2.3 Computation of the bounding boxes using anchor boxes, as is done in YOLOv2
[18]

Another improvement from the first version is that YOLOv2 is trained on differ-
ent image resolutions, making it more scale robust. To enable this, the image reso-
lution during training changes every 10 batches. The size varies between 320×320
and 608× 608 pixels at 32 pixel increments. This has the advantage that the same
network can be used for performing detection at different image scales [18].

Moreover, YOLOv2 is based on Darknet-19 classification model [18]. Darknet-
19 contains 19 convolutional layers and 5 maxpooling layers. The model uses
mainly 3× 3 filters, doubles the number of channels after each pooling step, uses
global average pooling for making predictions, and performs batch normalization.

2.1.3 Third Version of YOLO
In YOLOv3 [19], 4 coordinates are predicted for every bounding box, instead of
5 (like in YOLOv2). These 4 values are tx, ty, tw, th. Given these 4 coordinates, the
(cx,cy) cell offset from the upper left corner of the image, the bounding box prior
with dimensions pw, ph, the predictions are bx,by,bw,bh and they are also computed
as in YOLOv2. In addition, an objectness score for every bounding box is also
predicted using logistic regression. The score is 1 when the bounding box prior
overlays a ground truth object by more than the other bounding box priors. There is
one bounding box prior per every ground truth object.

Similar to YOLOv2, YOLOv3 can be used to make predictions for 3 distinct
scales, dividing the input image into a 13× 13, 26× 26 or 52× 52 grid. Each of
the 3 possible scales are used in different parts of the YOLOv3 network. The model
is therefore able to make N ×N × [B× (4+ 1+ noclasses)] predictions, where N is

24



2.1 Object Detection with YOLO

the grid scale, B is the number of boxes, and noclasses is the number of considered
classes [19].

In order to extract features, Darknet-53 network is used [19]. It contains 53 con-
volutional layers, and it is a hybrid between the Darknet-19 network from YOLOv2
and a residual network. Figure 2.4 illustrates the layers used in Darknet-53. Even
though Darknet-53 is more complex than Darknet-19, it is faster than ResNet-101
and ResNet-152 (described in paper Deep Residual Learning for Image Recognition
[20]).

Figure 2.4 The structure of Darknet-53 network [19]

2.1.4 Latest Versions of YOLO
There are ongoing improvements being made to the YOLO algorithm, with new
versions of the model becoming available. Our thesis uses YOLOv5 from Ultralytics
[21], which is similar to YOLOv3, by being able to detect objects of varying sizes
using different scales, but which also facilitates data enhancement and training with
custom datasets [13], [21].

Moreover, Ultralytics provides 5 versions of YOLOv5: nano (n), small (s),
medium (m), large (l) and an even larger version (x). The nano version is the small-
est and the fastest, designed for mobile solutions and being 2.5 MB in INT8 format.
The small version has around 7.2 million parameters, the medium version consists
of 21.2 million parameters. The large version has 46.5 million parameters and is de-
signed especially for datasets with small objects. The largest version is the slowest
(but also the most accurate) and has 86.7 million parameters.

Another new feature of YOLOv5 is the use of genetic algorithms (instead of
just k-means) to generate the anchor boxes. The process is called autoanchor and,

25



Chapter 2. Background

in short, the anchor boxes are recomputed in case the default ones do not fit the
data. The k-means algorithm is used together with the genetic one to create k-means
evolved anchor boxes. This helps YOLOv5 perform well on different datasets.

Last but not least, YOLOv5 uses mosaic augmentation during training, combing
4 different images into one, which makes the model learn difficult and diverse cases.

2.2 Object Detection for Fisheye Datasets

Most current object detection implementations rectify the distorted image before
being fed into an object detection network (e.g rectilinear, piece-wise linear or
cylindrical rectification [1]). Image rectification has its issues, both decreasing the
original field of view and introducing resampling distortion [1]. There are, however,
other techniques that try to adapt the algorithm to the distortion, without rectifying
the images.

An approach to increase the performance of object detection algorithms with
fisheye images as input is to create novel annotations, which adapt to the distortion.
An example of a research paper that follows this approach is Generalized Object
Detection on Fisheye Cameras for Autonomous Driving: Dataset, Representations
and Base-line by H. Rashed, E. Mohamed, G. Sistu, et al [22]. The authors created
a new curved bounding box model adapted to fisheye distortion and developed their
own dataset containing 10,000 fisheye images with annotations for several object
representations.

Different representations for the bounding boxes were tested including; standard
rectangular bounding boxes, oriented boxes (similar to the standard representation,
but with an additional rotation parameter θ̂ ), ellipse representation.

The authors also tried some distortion aware representations. The dataset used
is WoodScape [1], which was created using fisheye cameras calibrated using a 4th

order polynomial model for the distortion. Using this information, the authors de-
veloped a new curved bounding box representation based on circular arcs. This
representation is automatically generated, taking an object contour as input.

Lastly, the authors analyzed some generic polygon representations for the boxes,
like uniform angular sampling, uniform perimeter sampling, and curvature-adaptive
perimeter sampling.

In order to test their representations for the bounding boxes, the authors needed
to adapt YOLOv3. They named their adapted model FisheyeYOLO. First, they re-
placed the Darknet53 model from YOLOv3 with ResNet18 model [20]. FisheyeY-
OLO is also able to perform object detection at different scales. Non-Maximum
Suppression (NMS) [23] is used to select the highest confidence predictions. In ad-
dition, the authors used categorical cross-entropy and binary entropy losses instead
of L2 loss for categorical and object classification. A summary of FisheyeYOLO
model is illustrated in Figure 2.5.

26



2.2 Object Detection for Fisheye Datasets

Figure 2.5 Overview of the architecture of FisheyeYOLO [22]

A different approach is to try to modify the CNNs in order to make them more
robust to the fisheye distortion. An example in this regard is the Kernel Transformer
Network (KTN)—a model able to adapt CNNs trained on standard undistorted im-
ages to 360o image data [24]. At a high level, the KTN works by placing an addi-
tional convolution at every layer in a pre-trained CNN, which uses a unique kernel
Kθ for every row. This effectively allows the KTN to learn the equirectangular dis-
tortion parameters while maintaing the original CNN’s learned weights for object
detection. Once trained, a KTN can be used for several source CNNs without any
re-training.

The KTN can be used to substitute the standard convolutions in a CNN, as it is
intended to be a generalization of it [24]. Normally, CNNs use the same kernel in
order to extract the output feature map. In addition, the kernels should be translation
invariant. However, this property is broken when using 360o image data because of
the distortion. But the kernels from KTN are aware of the distortion. Supposing
we have an input feature map I ∈ RHxWxC and a source kernel used in standard
undistorted images K ∈ RkxkxC, the usual way to apply the source kernel is

F [x,y] = ∑
i, j

K[i, j]∗ I[x− i,y− j]. (2.7)

In contrast, KTN learns a function f that generates several kernels for several
distortions

KΩ = f (K,Ω), (2.8)

27



Chapter 2. Background

F [x,y] = ∑
i, j

KΩ[i, j]∗ I[x− i,y− j], (2.9)

where Ω parameterizes the distortion. Since the distortion in 360o images de-
pends on the location, Ω can be expressed as

Ω = g(θ ,φ), (2.10)

where θ and φ are the polar and azimuthal angle in spherical coordinates.
The authors of the paper state that one needs one KTN layer for every layer of

a source CNN [24].

The topic of deformable kernels for fisheye images is also presented in Fisheye-
HDK: Hyperbolic Deformable Kernel Learning for Ultra-wide Field-of-view Image
Recognition by O. Ahmad and F. Lecue [25]. The authors introduce the hyperbolic
deformable kernel, which is meant to be placed in the convolutional architecture
of a traditional CNN. Its parameters are trainable and therefore does not require a
prior knowledge of the camera and lens attributes. An assumption is made between
the analogous representation of fisheye distortion and the hyperbolic space, or more
specifically; a Poincaré ball [26]. With this, the model no longer needs to perform
any projections.

Figure 2.6 Architecture of the Fisheye HDK network [25]

From Figure 2.6 we see a high level schematic of the CNN architecture. The
model first performs a graph embedding and then a hyperbolic embedding of feature
points. The Möbius transformation [27] holds all the trainable parameters in the
hyperbolic space. Then the points are extracted back to a Euclidean space via a log0
mappings and recombined with the former graph representation’s weighting matrix
A.

The result of all of this complexity however is rather impressive compared
to other methods which have been tested. The model is able to produce a 16%
improvement in mean accuracy (mAcc) score when compared to a ’vanilla’ CNN
(both trained on synthetic fish eye dataset with 10k images and tested on real world

28



2.2 Object Detection for Fisheye Datasets

car fish eye data of 800 images).

Paper Restricted Deformable Convolution based Road Scene Semantic Segmen-
tation using Surround View Cameras [28] implements a deformable convolution
similar to the previous paper ([25]). The key difference being that they do not in-
clude an embedding into the hyperbolic space, and they also fix their central point
in the deformable convolution, giving them the name ’restricted deformable convo-
lution’. The last λ layers of the network employ the deformable convolution opera-
tion, and it was found that with seven of these layers they were able to get the best
results.

Figure 2.7 Different kernel representations: (a) represents a traditional 3x3 kernel. (b) is a
3x3 kernel with dilation 2. (c) is a deformable convolution with learnable offsets for each
sampling point, illustrated as the red arrows. (d) is similar to (c), but only with a fixed central
point (i.e. restricted deformable convolution). [28]

It is also worth mentioning that there is a difference between deformable convo-
lution and a deformable kernel, as discovered when reading Deformable Kernels:
Adapting Effective Receptive Fields for Object Deformation [29]. Deformable con-
volution specifies the convolution operation having a set of learned offsets for each
sampling point. Deformable kernels on the other hand use rigid convolution sam-
pling (no offsets), but the kernel itself can change for each sampled pixel.

Another technique is to make rotation-aware bounding boxes, especially in the
case of overhead cameras. An example in this sense is RAPiD: Rotation-aware Peo-
ple Detection in Overhead Fisheye Images [30]. In [30] a rotation-aware people
detection tool was developed, the boxes being arbitrarily-oriented depending on the
people’s positioning. In addition, a convolutional neural network was used to regress
the angle of every bounding box by making use of a periodic loss function. More-
over, the authors built their own dataset with challenging scenarios that includes
spatio-temporal annotations of rotated bounding boxes (the bounding boxes of the
same person do not have a different ID in consecutive frames).

The paper [30] uses arbitrarily-oriented bounding boxes in order to detect people
in fisheye distorted images. The used dataset has a top-down view.

29



Chapter 2. Background

The authors developed a new algorithm for detecting people in overhead, fisheye
images. Their solution, named RAPiD, consists of a one-stage convolutional neural
network that outputs the center coordinates, size, and angle of the arbitrarily-rotated
bounding boxes of people. The model is based on YOLOv3. The predicted bounding
box has the following format: (b̂ = (b̂x, b̂y, b̂w, b̂h, b̂θ , b̂con f ), where b̂x, b̂y are the
predicted center coordinates, b̂w, b̂h denote the predicted size (width, height), b̂θ is
the predicted angle of rotation, and b̂con f is the confidence score.

In order to be able to predict a rotation aware bounding box, the authors also
developed their own loss function. The loss function is also based on the one used
in YOLOv3, with the addition of the bounding-box rotation-angle loss. The angle
loss was necessary because regression functions based on L1 or L2 distance are
not aware of the periodicity of the angle, which can give wrong cost values due
to the symmetry in the parametrization of rotated bounding boxes. The first step
was to consider a π periodic function with the following expressions: langle(θ̂ ,θ) =

f (mod(θ̂ − θ − π

2 ,π)−
π

2 ), where θ̂ is the predicted angle, θ is the ground truth
angle, f is a symmetric regression function. Next, the authors defined [−π

2 ,
π

2 ) as
the ground truth angle and they also constrain the ground truth bw < bh. Lastly, they
make sure that the predicted angle range is inside (−π,π).

One aspect that is worth mentioning is that one needs to have a fisheye dataset
annotated with rotated bounding boxes in order to reproduce this approach.

2.3 Semantic Segmentation for Fisheye Datasets

Semantic segmentation is similar to object detection, but instead of outputting the
coordinates for a bounding box surrounding the object, the models that perform
segmentation return the coordinates of the polygon that surrounds an object. In
this way, there is a segmentation map [31] for each object in the ground truth. In
other words, semantic segmentation associates semantic classes for pixel observa-
tions [32]. Unlike object detection, where a bounding box has only two pairs of
coordinates, the number of coordinates defining an object can be different for each
instance.

An example of paper a that does semantic segmentation with fisheye images
is Real-time Semantic Segmentation for Fisheye Urban Driving Images based on
ERFNet [33]. The authors present a novel CNN architecture based on Efficient
Residual Factorized Networks (ERFNet) [34] that give good results using only syn-
thetic fisheye data.

They highlight the benefit of using fewer wide angle cameras to capture 360
video of a vehicle’s perimeter. The benefits here being a reduced computational
load and naturally reduced complexity w.r.t. camera calibration and time syncing
[33].

30



2.4 Amazon Web Services Elastic Compute Cloud

An orthogonal fisheye model was used at varying focal lengths on a pre-existing,
semantically segmented datasets to synthetically create a fisheye dataset. The model
was an ERFNet CNN with 4 additional pyramid pooling modules inserted before
the original upsampling layers. The pyramid pooling method works by pooling the
feature map in the previous layer into 4 different pooling sizes. Then compressed
via convolution to have 1 layer of depth, then upsampled and stacked onto the end
of the original feature map before continuing to whatever final process was being
used in the network’s architecture. This bit has code name ’PSP’.

According to [33], the ERFNet PSP was much better than ’vanilla’ ERFNet. It
took slightly longer to run real-time, and performed slightly worse when the fisheye
distortion was high (or the focal length in the projection model was low, in turn
giving high distortion).

The paper shows that creating synthetic data by distorting existing datasets (e.g.
CityScape [35]) is rather effective. The technique introduced does not however yield
a good result compared to abilities of the same object detection algorithms on ’clas-
sical’ undistorted images. That is, the model from the paper only yields a 61% IoU
when the results for undistorted ’classical’ images is much higher [33].

2.4 Amazon Web Services Elastic Compute Cloud

In order to run our experiments, we decided to use a virtual machine. Amazon Web
Services (AWS) platform has a service, called Elastic Compute Cloud (EC2), that
permits the users to rent virtual machines and develop their applications [36]. The
virtual machine is called an instance.

We chose to launch an instance in US West (Oregon) region as this region
has several available virtual computers with GPU. The user also needs to select
the Amazon Machine Image (AMI) when working with EC2. The AMI is an im-
age that specifies the operating system, applications and other information required
to launch a virtual machine [37]. We selected Deep Learning AMI GPU PyTorch
1.13.0 (Amazon Linux 2) AMI. This AMI has a Linux kernel and it is designed to
be used in Deep Learning applications. We went for the PyTorch version because
YOLOv5 is implemented using PyTorch. After choosing the AMI, one needs to
specify the virtual instance type. We chose a P3 instance, which is recommended
for high performance computation, suitable for Deep Learning applications [36]. To
be more exact, we selected a p3.2xlarge instance, which has one GPU with 16 GiB
of memory and a 2.3 GHz (base) and 2.7 (turbo) Intel Xeon E5-2686 v4 processor.

31



3
Methods

The chapter presents the theoretical background behind the implementation. In ad-
dition, the evaluation metrics are also introduced; intersection over union (IoU) [38],
mean average precision (mAP) [39], and F1-score [40].

3.1 4th-Order Polynomial Mapping

There are several models used to compensate for the lens distortion in a camera,
each one befitting a different type of distortion or design requirement. For this
project, the lens is modeled as having a 4th-order polynomial distortion.

The process of rectification involves first projecting the 2D image to a 3D real-
world space, then projecting the 3D points back to a 2D image. In our case the first
projection is either rectilinear or cylindrical and the second projection back to 2D
uses the 4th-order polynomial mapping.

The fisheye distortion is orb-like with heavy distortion near the edge but mini-
mal distortion towards the image center. For our application, this mapping is used
only to project 3D points to a 2D image, the equations for which are provided below

χ =
√

X2 +Y 2, (3.1)
θ = arctan2(χ,Z), (3.2)

ρ = ρ(θ) = k1θ + k2θ
2 + k3θ

3 + k4θ
4, (3.3)

u′ =
ρX
χ

if χ ̸= 0 else 0, (3.4)

v′ =
ρY
χ

if χ ̸= 0 else 0, (3.5)

u = u′+ cx +
w
2
−0.5, (3.6)

v = v′aR + cy +
h
2
−0.5, (3.7)

32



3.2 Cylindrical Mapping

where X , Y , Z are the 3D points and u and v are the 2D image points. cx and
cy denote the image center w.r.t. the top left corner of the image. w and h denote
the image’s width and height, respectively. f and aR are the focal length and aspect
ratio of the camera lens.

3.2 Cylindrical Mapping

Figure 3.1 Before and after of a cylindrical projection. The vertical axis has clearly been
undistorted, evidenced by the straightness in the height of all the buildings. The horizontal
axis remains slightly distorted. This type of projection is helpful for maintaining the horizon-
tal field of view while mitigating any vertical distortion.

The cylindrical mapping equations were used to project the 2D image points
into 3D space. The result of combining this projection with the 4th-order polyno-
mial mapping described above is an image who’s vertical axis is now linear, but
the horizontal axis maintains some level of radial distortion. The equations used to
project the 2D image into 3D space are

33



Chapter 3. Methods

θ =
u
f
, (3.8)

C =
1√

v2 + f 2
, (3.9)

X ′ =C ∗ f sinθ , (3.10)
Y ′ =C ∗ v, (3.11)
Z′ =C ∗ f cosθ . (3.12)

Variable naming is the same as the previous section. The equations come actu-
ally from the WoodScape GitHub repository [41].

3.3 Rectilinear Mapping

A simple rectilinear mapping is used to project the 2D image into 3D space so that
our 4th-order polynomial model can then correct the fisheye image distortion and
yield an image which most closely resembles that from a pinhole camera. According
to Hartley and Zisserman ([42]), the equation for rectilinear projection is

u
v
f

=
f
C

X
Y
Z

 . (3.13)

The value of the coefficient C was chosen such that the image projection had a
reasonable scale and any black, seen at the top of the reconstructed image, was min-
imized. This projection distance worked well with the resulting 3D to 2D projection
via the 4th-order polynomial described in Section 3.1.

In Figure 3.4 we see an example of a zoomed-out rectilinear mapping. This
image highlights a critical issue in our projects goal of translation invariance and
maintained wide field of view when processing barrel distorted or fisheye images.
While this projection successfully demonstrates the mapping to a linear image space
while maintaining a similar field of view, the scale and hence resolution of objects
at the center of the image suffer greatly. When the rectilinear projection is applied,
an object at a given distance Z from the camera’s reference point (see Figure 3.2)
will have the same scale across the entire field of view. Because image resolution is
not increased during projection, the objects near the center which are now adjusted
in scale, become heavily compressed.

A related issue are the inconsistencies in pixel density with respect to the 3D-
world across the image sensor, i.e. objects appearing at the center of the image are
rendered with a higher pixel density than objects near the periphery. After the rec-
tilinear projection occurs, there are two options for handling resolution. Either the

34



3.3 Rectilinear Mapping

Figure 3.2 This figure illustrates the projection of a point on the image plane to 3D space. It
has been taken from NVIDIA’s Vision Programming Interface documentation page.

Figure 3.3 The before and after results from our rectilinear projection. Much of the image
has been cropped from the original, dramatically reducing the field of view. The 4th-order
polynomial mapping is successful as evidenced by the straight edges of the buildings in the
rectified image.

total image resolution must be increased to maintain the information being com-
pressed at the center and allow for interpolation of pixel values at the periphery, or
resolution is maintained and the objects at the center are heavily compressed. As
mentioned, the variability in pixel density between objects rendered at the center
and those on the far periphery becomes readily apparent.

35



Chapter 3. Methods

Figure 3.4 Zoomed-out version of the rectilinear projection. The image demonstrates the
deviation from the true transformation in the 4th-order polynomial function as we get closer
to the images edges.

3.4 Tiled Mapping

The idea is to divide the original fisheye images into 3 or 6 tiles (depending on the
camera orientation) and to rectify each tile individually. The code for generating
the tiles was inspired by LaMAR: Benchmarking Localization and Mapping for
Augmented Reality [43]. Each tile has its corresponding rotation angles. See the
diagram in Figure 3.5 for an illustration of the car’s reference coordinate system.
By using this coordinate system and the corresponding angles (called x, y, z), one
can build the rotation matrix as

Rx =

1 0 0
0 cox(x) −sin(x)
0 sin(x) cos(x)

 , (3.14)

Ry =

cos(y) 0 −sin(y)
0 1 0

sin(y) 0 cos(y)

 , (3.15)

Rz =

cos(z) −sin(z) 0
sin(z) cos(z) 0

0 0 1

 , (3.16)

R = Rx ×Ry ×Rz. (3.17)

36



3.5 Intersection over Union (IoU)

Figure 3.5 This diagram shows the car’s reference coordinate system for the rear facing
camera. The rotation matrix, R is defined with respect to this coordinate system. The z axis
here is parallel to the forward driving direction and y is pointing straight down.

Camera (x,y,z)
Mirrors x = (α,β ,0)

Front/Rear (α,0,0)

Table 3.1 A different set of projection angles (x,y,z) is used for the side-view mirror cameras
versus the front and rear cameras.

This rotation matrix is used in order to undistort the tiles. Similar to the previous
rectilinear correction, a mapping is used to project the 2D tile image into 3D space
in order to correct the fisheye distortion and output a rectified image. The projection
equations can be seen in Equations 3.18 and 3.19

C = 2 f , (3.18)u
v
f

=
f
C

 X
Y
1
2 Z

 . (3.19)

3.5 Intersection over Union (IoU)

IoU (or Jaccard index) is a commonly used evaluation metric in object detection
problems [38], [44]. Supposing that A is the area of the predicted bounding box
and B is the area of the bounding box from the ground truth, then the IoU can be
used in order to compute how much overlap there is between the two bounding
boxes, relative to their combined size. As it can be seen in Equation 3.20, the IoU
consists of the overlapping area between the two bounding boxes divided by the
area obtained from the union of the two bounding boxes as

IoU =
A∩B
A∪B

. (3.20)

37



Chapter 3. Methods

3.6 Mean Average Precision (mAP)

The mean average precision (mAP) is another popular metric for evaluating the
performance of object detection algorithms [45]. The mAP is the average of the AP
for all predicted classes, where the AP is computed as the area under the precision-
recall curve [39].

The precision is expressed as

Precision =
T P

T P+FP
, (3.21)

and the recall is defined as

Recall =
T P

T P+FN
, (3.22)

where T P is the number of true positives, FP is the number of false positives,
and FN is the number of false negatives [46], [44].

First, every prediction is checked if it has an IoU higher than 0.5. If it does,
the prediction is counted as a true positive, otherwise it is considered to be a false
positive. Then, the precision and recall are computed for increasingly large sub-
sets of predictions, from the most confident predictions to the least confident ones
[39]. The precision-recall curve is plotted using the computed values. The AP is the
area under the precision-recall curve. This is computed as a quadrature approxima-
tion sampling at 11 uniformly spaced values of recall [39]. This mAP is sometimes
also called mAP50 (because of the 0.5 IoU threshold). One can also see mAP50-
95, which corresponds to the average mAP for IoU threasholds from 0.5 to 0.95,
normally with a step of 0.05.

3.7 F1 Score

Another metric that shows the accuracy of a test is the F1 score [40]. As it can be
seen in Equation 3.23, the F1 score is expressed as

F1 = 2× P×R
P+R

, (3.23)

where P is precision and R is recall. The higher the F1 score, the better. The
range is between 0 and 1, a value of 1 meaning that both precision and recall are
perfect.

38



4
Object Detection

This chapter presents the baseline and rectification experiments for the object detec-
tion task. Our thinking was to inspect the performances of classical object detection
with fisheye images. Therefore, we thought that our baseline should take as input
the distorted images from the WoodScape dataset [1] and their corresponding 2D
bounding box annotations, feed them into the YOLOv5 model [21] and analyze the
output.

The dataset is then rectified using two different mapping functions, cylindrical
and rectilinear, and the same experiment is performed as with the original dataset.
To do this, it was also necessary to map the ground truth annotations as covered in
Section 4.2.

4.1 Making WoodScape Compatible with YOLOv5

We used 8234 RGB images and their corresponding 2D annotations for the base-
line. The 2D annotations specify the x and y coordinates of the corners of the rect-
angle bounding boxes containing the objects. More precisely, with 2D annotations,
the bounding box coordinates of the top-left (xmin, ymin) and bottom-right (xmax,
ymax) corner are listed. There are five classes represented for 2D annotations: peo-
ple, vehicles, bicycle, traffic lights and traffic sign. Each of these classes has a cor-
responding class ID: 0 - vehicles, 1 -person, 2 - bicycle, 3 - traffic light, 4 - traffic
sign. In summary, the annotation format for the 2D boxes is the following: name of
the class, class ID, xmin, ymin, xmax, ymax.

However, YOLO has a different annotation format. For each image, YOLO
needs a text file that contains the annotations. The file contains as many lines as
the number of bounding boxes in an image. Each line specifies the corresponding
class ID of the object represented in the bounding box, the x and y coordinates of
the center of the bounding box, as well as the width and the height of the bounding
box. It is worth mentioning that the x and y coordinates, as well as the width and
the height, are normalized.

39



Chapter 4. Object Detection

Consequently, a script to do the conversion from the 2D WoodScape annotations
to the YOLO annotations format was implemented. First, the script extracts the
important information from each 2D WoodScape annotation file in a data dictionary
containing: filename, image size, and a dictionary with the bounding boxes (for each
bounding box, the object name, class ID, xmin, ymin, xmax, ymax are saved). Next,
a function takes as input this data dictionary, and converts the information according
to the YOLO format using the following expressions from Equations 4.1 - 4.4:

x =
xmin+ xmax

2
, (4.1)

y =
ymin+ ymax

2
, (4.2)

width = xmax− xmin, (4.3)

height = ymax− ymin. (4.4)

The parameters x,y,width,height are further normalized. After doing all the
computations, the class ID, x,y,width, and height of every bounding box are saved
in a text file, having the same name as its corresponding image.

For example, supposing we have the following 2D WoodScape annotation file:

1 vehicles ,0 ,985 ,317 ,1047 ,369
2 person ,1 ,191 ,346 ,243 ,428
3 traffic_sign ,4 ,400 ,231 ,419 ,252
4 vehicles ,0 ,656 ,255 ,695 ,286
5 vehicles ,0 ,601 ,254 ,638 ,282
6 vehicles ,0 ,325 ,275 ,488 ,354

Listing 4.1 2D annotation file from WoodScape

Its corresponding annotation file in YOLO format is:

1 0 0.794 0.355 0.048 0.054
2 1 0.170 0.401 0.041 0.085
3 4 0.320 0.250 0.015 0.022
4 0 0.528 0.280 0.030 0.032
5 0 0.484 0.277 0.029 0.029
6 0 0.318 0.326 0.127 0.082

Listing 4.2 Adapted 2D annotation file from WoodScape

After converting all the annotation files to YOLO format, one needs to divide
the dataset into training, validation, and testing. We implemented another script to
divide the dataset into 80% training, 10% validation, and 10% testing.

One last thing worth mentioning is that WoodScape has only 5 classes and they
are not included in the set of classes which YOLO has been pre-trained on. There-
fore, one needs to add a YAML file which includes the path to the WoodScape
images and the classes with their corresponding class ID.

40



4.2 Conversion of the Bounding Box Coordinates

4.2 Conversion of the Bounding Box Coordinates

In order to analyze YOLO results with the corrected images, one needs to generate
also the 2D bounding box annotations for the cylindrical and the rectilinear images.
An example of an annotated fisheye image with 2D bounding boxes can be seen in
Figure 4.1.

Figure 4.1 Example of an annotated fisheye image with 2D bounding boxes, taken directly
from the WoodScape dataset.

The straightforward approach was to take the coordinates of the fisheye bound-
ing boxes and make projections in order to get the corresponding coordinates for
the cylindrical and rectilinear images. In detail, we used the two coordinates (top
left and lower right corners) of each bounding box in the fisheye images and we
performed the 2D to 3D projection in order to get the real-world space coordinates.
Afterward, we used the real-world space coordinates and we performed a cylindri-
cal/rectilinear 3D to 2D projection in order to get the two corresponding coordinates
of the bounding boxes for the cylindrical/rectilinear corrected images. An example
of the resulted coordinates can be observed in Figure 4.2.

But by following this approach, we noticed that because of the distortion, the
resulting bounding boxes did not cover the whole object, especially in the corners
of the image. For example, in Figure 4.2a, the bounding boxes are cropping the bus
and some people from the right part of the image. The same remark is applicable to
Figure 4.2b.

Therefore, instead of assuming each bounding box is a rectangle, definable by
only two coordinates, the bounding box was posed as a polygon defined by a co-

41



Chapter 4. Object Detection

(a) (b)

Figure 4.2 Example of a cylindrical and a rectilinear image with the resulted bounding box
coordinates after applying the projection considering two coordinates of the bounding boxes
from the fisheye image. Notice the objects being cropped by the resultant bounding box,
particularly in objects near the edge of the image in the rectilinear projection.

(a) (b)

Figure 4.3 Example of a cylindrical and a rectilinear image with the remapped bounding
box coordinates after applying the projection considering four coordinates of the bounding
boxes from the fisheye image. The resulting skew of the bounding box should be corrected
in order to work better with the YOLO object detector (see figure 4.4).

ordinate at each corner. Remapping of coordinates followed the same procedure as
before. An example of the remapped coordinates can be observed in Figure 4.3. As
it can be noticed in Figure 4.3, the resulting four bounding box coordinates for the
cylindrical and the rectilinear images do not form a rectangle, as they did for the
fisheye image. This was expected because of the distortion correction.

However, YOLO can only take two coordinates for each bounding box, not four.
Consequently, an additional processing step was performed: given the resulted four
coordinates of the bounding boxes for the cylindrical/ rectilinear corrected images,
one takes into account only the (xmin,ymin) and (xmax,ymax) coordinates. The final

42



4.3 Original Dataset

(a) (b)

Figure 4.4 Example of a cylindrical and a rectilinear image with the final bounding box
annotations

bounding boxes can be seen in Figure 4.4.
As it can be observed in Figure 4.4, the bounding boxes for the cylindrical and

the rectilinear images cover a larger area than the object. This effect can be more
noticeable in the corners of the images, where the fisheye distortion is stronger. For
instance, the bounding boxes for the traffic lights in the top right corner of Figure
4.4a covers a larger area. The same can be said for the bounding boxes of the bus
and the car in the left part of Figure 4.4b.

4.3 Original Dataset

We first trained YOLO on the original fisheye distorted images from the WoodScape
dataset using the pretrained COCO weights. We trained the model for 200 epochs
using a batch size of 32. We initially considered the small model from YOLO. As
it can be seen in Listing 4.3, the training took 2.470 hours. Listing 4.3 displays the
validation results, where 821 images were used.

The dataset is imbalanced. As it can be noticed in Figure 4.5, there are signif-
icantly more vehicles than other classes. When working with imbalanced datasets,
some good metrics for evaluation are the precision and the recall.

43



Chapter 4. Object Detection

200 epochs completed in 2.470 hours
Model summary : 157 layers , 7023610 parameters , 0 gradients , 15 .8 GFLOPs:

Class Images Instances p R mAP50 mAP50 -95
all 821 6953 0.645 0.435 0.494 0.262

vehicles 821 4367 0.752 0.66 0.733 0.476
person 821 1521 0.78 0.447 0.579 0.292

bicycle 821 680 0.507 0.282 0.324 0.155
traffic_light 821 137 0.634 0.391 0.434 0.183
traffic_sign 821 248 0.553 0.395 0.398 0.206

Listing 4.3 Object detection validation results of the original fisheye dataset from
WoodScape using YOLOv5 as the training model - small model of YOLOv5. The picture
shows for each class the number of images used for validation, the number of instances,
precision (P), recall (R), mAP50 and mAP50-95 scores.

Figure 4.5 Distribution of class instances for object detection in the original fisheye images
from WoodScape. The vehicles are the most represented, while the traffic lights are the least
represented.

The results for precision and recall can be seen in Listing 4.3. Overall, the pre-
cision is 0.645 and the recall is lower, 0.435. The lower recall indicates a high false
negative rate, which means that the model fails to predict some objects that are
present in the image. The best results for recall (0.66) are for the vehicles, which
was expected since this is the dominant class. The precision is the highest for the
person class (0.78), and closely followed by the vehicles class (0.752).

Another metric that is frequently used when evaluating the results of object de-
tection is mean average precision (mAP). The average precision (AP) makes use of
a threshold value of the intersection over union (IoU). Some common thresholds
values are 0.5, corresponding to an IoU over 0.5 and mAP50, and between 0.5 and
0.95, corresponding to an IoU between 0.5 and 0.95 and mAP50-95. Computing
the AP corresponds to finding the area under the precision-recall curve. Figure 4.6
illustrates the precision-recall curve. The results on the right side of the image cor-
respond to the mAP50 results. As it can be seen, the best result is for the vehicles,

44



4.3 Original Dataset

having the largest area under the curve and a mAP50 of 0.733. The traffic sign and
the bicycle classes have the worst results.

Figure 4.6 Precision-recall curve after performing object detection on the original fisheye
dataset. The results on the top right corner correspond to the mAP50 scores. Vehicles (light
blue) achieved the best results, while the bicycle class (green) performed the worst.

Figure 4.7 F1-confidence curve after performing object detection on the original fisheye
dataset. The vehicles (light blue) have the highest F1 score, while the bicycle class (green)
has the lowest F1 score.

45



Chapter 4. Object Detection

Figure 4.8 Confusion matrix after performing object detection on the original fisheye
dataset. The vehicles have the highest true positive rate, while the bicycle have the lowest
true positive rate.

The confusion matrix can also be analyzed. As it can be seen in Figure 4.8,
the best results being again achieved by the vehicles class, the model correctly pre-
dicting 0.74 of the instances. 56% of the person instances were correctly predicted.
Only 37% of the bicycle instances were detected. Also, the confusion matrix is in
accordance to the low recall value, as it can be easily noticed from Figure 4.8 that
a lot of instances failed to be detected, being classified as background (54% of the
traffic sign instances, 50% of the person instances etc.).

Figure 4.9 presents the evolution of the box, object and class loss, as well as the
evolution of the precision, recall and mAP during training. As it can be seen, the box
validation loss is around 0.042. It can be noticed that there is a slight overfit after
150 epochs when analyzing the evolution of the object and class loss. However, the
object loss is around 0.046 and the class loss is around 0.009.

Figure 4.7 pictures the F1-confidence curve. Ideally, a high value for both F1
score and confidence are desired. However, it can be seen that the F1 score decreases

46



4.3 Original Dataset

Figure 4.9 The evolution of box, object, class loss, as well as precision, recall, mAP50,
mAP50-95 for training and validation when performing object detection on the original fish-
eye dataset

very much for all the classes after a confidence value of 0.6. Actually, except for the
vehicles class, the decrease in the F1 score can be observed even after a confidence
value of 0.5.

Last but not least, some examples of the detection results can be observed in
Figure 4.10. In Figures 4.10a and 4.10b only some vehicles are detected (also notice
that the person in Figure 4.10a fails to be detected), while in Figure 4.10c the model
fails to detect anything.

We also considered the medium version of YOLO, but as it can be noticed in
Listing 4.4, only the mAP was slightly improved.
190 epochs completed in 2.273 hours.
Model summary: 212 layers , 20869098 parameters , 0 gradients , 47.9 GFLOPs:

Class Images Instances p R mAP50 mAP50 -95
all 821 6953 0.582 0.54 0.533 0.303

vehicles 821 4367 0.711 0.723 0.761 0.52
person 821 1521 0.715 0.561 0.636 0.344

bicycle 821 680 0.456 0.41 0.366 0.195
traffic_light 821 137 0.592 0.526 0.46 0.21
traffic_sign 821 248 0.437 0.482 0.443 0.245

Listing 4.4 Object detection validation results of the original fisheye dataset from
WoodScape using YOLOv5 as the training model - medium model of YOLOv5. The picture
shows for each class the number of images used for validation, the number of instances,
precision (P), recall (R), mAP50 and mAP50-95 scores.

In addition, as it can be seen in Figure 4.11, the model was very overfitted. For
instance, there is a considerable divergence between the training and the validation
evolution of the object and class losses. For the validation, both object and class
losses increase after approximately 80 epochs. Consequently, we only considered

47



Chapter 4. Object Detection

(a) (b)

(c)

Figure 4.10 Example of detection result when using the original fisheye images. Notice the
undetected vehicles in Figure 4.10b and the failure to detect anything in Figure 4.10c.

the results from the small YOLO model.

48



4.4 Cylindrical Rectification

Figure 4.11 The evolution of box, object, class loss, as well as precision, recall, mAP50,
mAP50-95 for training and validation when performing object detection on the original fish-
eye dataset. The medium model of YOLOv5 was used. The divergence in loss metrics be-
tween the training and validation datasets serves as an indication of overfitting.

4.4 Cylindrical Rectification

The results for the cylindrical corrected images after training YOLO with them for
150 epochs can be seen in Listing 4.5. Similar to the previous baseline, we used
the pretrained COCO weights for YOLO. The used batch size was 32. Overall, the
precision with the cylindrical images is 0.578 and the recall is 0.46.
150 epochs completed in 1.599 hours .
Model summary : 157 layers , 7023610 parameters , 0 gradients , 15 .8 GFLOPs:

Class Images Instances p R mAP50 mAP50 -95
all 819 7025 0.578 0.46 0.479 0.251

vehicles 819 4374 0.663 0.714 0.743 0.472
person 819 1532 0.654 0.533 0.567 0.287

bicycle 819 679 0.481 0.339 0.343 0.168
traffic_light 819 165 0.616 0.35 0.393 0.172
traffic_sign 819 275 0.475 0.364 0.348 0.155

Listing 4.5 Object detection validation results of the cylindrical corrected dataset using
YOLOv5 as the training model. The picture shows for each class the number of images used
for validation, the number of instances, precision (P), recall (R), mAP50 and mAP50-95
scores.

The overall mAP50 is 0.479. Figure 4.12 presents the precision-recall curve.
The results on the right correspond to the mAP50 results. The best result is for the
vehicles, the most represented class, having the largest area under the curve and a
mAP50 of 0.743. The lowest mAP50 is reached by the class bicycle (0.343).

The confusion matrix after running YOLO with cylindrical corrected images
can be observed in Figure 4.14. The vehicles class has the best results, 75% of all

49



Chapter 4. Object Detection

Figure 4.12 Precision-recall curve after performing object detection on the cylindrical cor-
rected dataset. The results on the top right corner correspond to the mAP50 scores. The
highest AP score is achieved by the vehicles class (light blue), while the bicycle class (green)
performs the worst.

Figure 4.13 F1-confidence curve after performing object detection on the cylindrical cor-
rected dataset. The vehicles (light blue) achieve the best F1 score, while the bicycle (green)
and traffic sign (purple) classes perform the worst.

vehicles instances being correctly predicted. The worst results are for the bicycle
class, only 35% of them being correctly identified. These results are in accordance
to the low recall score, since as it can be noticed from Figure 4.14 a significant
amount of objects are classified as background (59% of the traffic signs, 62% of the

50



4.4 Cylindrical Rectification

traffic lights, etc.).

Figure 4.14 Confusion matrix after performing object detection on the cylindricaly corrected
dataset. The class with the highest rate of true positives is the vehicles class, while the bicycle
class has the lowest rate of true positives.

Figure 4.13 pictures the F1-confidence curve. The F1 score decreases very much
after a confidence of 0.5 for all classes except the vehicles (which has a significant
decrease in the F1 score after a confidence of 0.6).

Figure 4.15 presents the evolution of the box, object, and class loss, as well as
the evolution of the precision, recall and mAP during training. The box validation
loss is around 0.043, the object validation loss is around 0.041, and the validation
class loss is around 0.009.

Some example of detection results can be seen in Figure 4.16. In Figure 4.16a
most of the vehicles are detected (a few from the left side of the image are omitted).
In Figure 4.16b the model is also good at detecting vehicles, but it detects just one
person. In Figure 4.16c the model fails to detect any bicycle and also most of the
vehicles.

51



Chapter 4. Object Detection

Figure 4.15 The evolution of box, object, class loss, as well as precision, recall, mAP50,
mAP50-95 for training and validation when performing object detection on the cylindrical
corrected dataset.

52



4.4 Cylindrical Rectification

(a) (b)

(c)

Figure 4.16 Example of detection results when using cylindrical corrected images. Notice
that there are a lot of detected vehicles in Figure 4.16a and Figure 4.16b, but the people and
the bicycles are not detected. The bounding boxes are very large, covering more than just the
object. This problem comes from converting the original fisheye annotations to cylindrical
annotations.

53



Chapter 4. Object Detection

4.5 Rectilinear Rectification

A first effect of the reduced field of view when doing the rectilinear correction
is that there is also a reduction in the number of instances for the classes. This
can be observed in Figure 4.17. When using the rectilinear images there are only
17500 vehicles instances, whereas when using the original fisheye images there
are 35000 vehicles instances. However, the imbalance between the classes remains
quite similar in both situations.
150 epochs completed in 1.415 hours.
Model summary: 157 layers , 7023610 parameters , 0 gradients , 15.8 GFLOPs:

Class Images Instances p R mAP50 mAP50 -95
all 819 3949 0.623 0.505 0.542 0.301

vehicles 819 2336 0.764 0.707 0.776 0.497
person 819 900 0.693 0.603 0.637 0.351

bicycle 819 393 0.529 0.321 0.358 0.194
traffic_light 819 124 0.645 0.452 0.502 0.244
traffic_sign 819 196 0.486 0.444 0.438 0.218

Listing 4.6 Object detection validation results of the rectilinear corrected dataset from
WoodScape using YOLOv5 as the training model. The picture shows for each class the
number of images used for validation, the number of instances, precision (P), recall (R),
mAP50 and mAP50-95 scores.

The results for the rectilinear corrected images after training YOLO with them
for 150 epochs can be seen in Listing 4.6. Once again, the pretrained COCO weights
for YOLO were used and the batch size was 32. The training took 1.415 hours.
The overall recall is 0.505. The vehicles class has again the highest recall (0.707).
The recall for some underrepresented classes improved: the recall for traffic light is
0.452 and the recall for traffic sign is 0.444.

Figure 4.17 Comparison of the number of instances for each class for object detection when
using the rectilinear corrected images (right) vs. when using the original fisheye images (left).
Observe the drastic reduction in the number of instances due to cropping.

54



4.5 Rectilinear Rectification

Figure 4.18 Precision-recall curve after performing object detection on the rectilinear cor-
rected dataset. The results on the top right corner correspond to the mAP50 scores. The class
with the highest AP is the vehicles class (light blue), while the class with lowest AP is the
bicycle class (green).

Figure 4.19 F1-confidence curve after performing object detection on the rectilinear cor-
rected dataset. The class with the highest F1 score is the vehicles class (light blue), while the
class with the lowest F1 score is the bicycle class (green).

The overall mAP50 with rectilinear corrected images is 0.542. Figure 4.18
presents the precision-recall curve. The results on the right side correspond to the
mAP50 results. The best result is for the vehicles, having the largest area under

55



Chapter 4. Object Detection

the curve and a mAP50 of 0.776. The class person has also a reasonable mAP50
now (0.637). The lowest mAP50 is reached by the class traffic sign, with a score of
0.438.

The confusion matrix after running YOLO with rectilinear corrected images
can be observed in Figure 4.20. The vehicles class has the best results, 78% of all
vehicles instances being correctly predicted. The worst results are for the bicycle
class, only 40% of them being correctly identified. These results are in accordance
to the recall score, since as it can be noticed from Figure 4.20 a significant amount
of objects are classified as background (46% of the traffic signs, 47% of the traffic
lights, etc.).

Figure 4.20 Confusion matrix after performing object detection on the rectilinear corrected
dataset. The vehicles class has the highest true positive rate, while the bicycle class the lowest
true positive rate.

Figure 4.19 pictures the F1-confidence curve. The F1 score decreases very much
after a confidence of 0.6 for all classes except the vehicles (that has a significant
decrease in the F1 score after a confidence of 0.7).

Figure 4.21 presents the evolution of the box, object, and class loss, as well as

56



4.5 Rectilinear Rectification

the evolution of the precision, recall and mAP during training. The box validation
loss is around 0.040, the object validation loss is around 0.028, and the validation
class loss is around 0.010.

Figure 4.21 The evolution of box, object, class loss, as well as precision, recall, mAP50,
mAP50-95 for training and validation when performing object detection on the rectilinear
corrected dataset

The amount of information lost can be observed also in the examples of detec-
tion results from Figure 4.22 (compared to the images in Figure 4.16). For example,
in Figure 4.22a there is only one car instance detected, and there are only 4 car
instances in total because of the reduction in the field of view.

57



Chapter 4. Object Detection

(a) (b)

(c)

Figure 4.22 Example of detection results when using rectilinear corrected images. Notice
that there are not so many objects in the pictures due to the reduction in the field of view.
Moreover, many vehicles fail to be detected in Figure 4.22a. The bounding boxes are very
large, covering more than just the object. This problem comes from converting the original
fisheye annotations to rectilinear annotations.

58



5
Semantic Segmentation

This chapter covers the baseline and rectification experiments for semantic segmen-
tation. The input for the baseline consists of the fisheye distorted images from the
WoodScape dataset [1] and their corresponding semantic segmentation annotations.
The model used to perform the training is YOLOv5 again [21].

Like with the object detection experiments, rectified versions of the WoodScape
dataset were used to train YOLOv5 and test whether such methods improved detec-
tion results.

5.1 Pre-Processing the Annotations

WoodScape provided instance annotations in the below form:

1 {"00000 _FV.json": {" annotation ": [{"id":
2 "C0E39A62 -5569 -2062 -F133 -ABBCF8A97C3E",
3 "segmentation ": [[193.0 , 3.3810000000000002] ,
4 [246.66666666666669 , 3.3810000000000002] ,
5 [595.6666666666667 , 3.3810000000000002] ,
6 [1102.269592476489 , 3.3810000000000002] ,
7 [1280.0 , 3.3810000000000002] , [1280.0 , 0.0],
8 [0.0, 0.0], [0.0, 3.3810000000000002]] ,
9 "states ": {}, "tags": [" green_strip "],

10 "z_order ": 0}, {"id":
11 "C1EC99BB -ED0B -4DF0 -297F-3 C3F1EF7A916",
12 "segmentation ": [[1280.0 , 962.619] ,
13 [1280.0 , 966.0] , [0.0, 966.0] ,
14 [0.0, 962.619]] , "states ": {},
15 "tags": [" green_strip "], "z_order ": 0}...

Listing 5.1 A snippet of a JSON file which contains information about all the segmentations
in a single scene. There is additional information here which will not be used such as states,
id and z_order.

As it can be noticed, the annotations do not match COCO format. Therefore, we
modified a script that was reading all these annotations and was mapping the tags
to 9 classes (0 - road, 1 -lanemarks, 2 - curb, 3 - person, 4 - rider, 5 - vehicles, 6 -

59



Chapter 5. Semantic Segmentation

bicycle, 7 - motorcycle, 8 - traffic_sign) and we converted the given format to COCO
format for semantic segmentation. After processing, the segmentation annotations
have the following format:

1 3 0.94437210 0.47182923 0.94220196 0.47710106 ...
2 3 0.28647534 0.36813700 0.28011588 0.36939577 ...
3 1 0.30590570 0.42927810 0.32862750 0.42189023 ...

Listing 5.2 Example of a semantic segmentation annotation file for WoodScape after
processing the JSON file. In this snipped there are three polygons, one for each new line.
The information is space-delimited with the first number defining the polygons class and the
following pairs defining (x,y) points of the polygon.

As it can be noticed in Listing 5.2, the information from the annotation file has
the following structure: class ID code followed by a set of (x,y) coordinates for the
segmentation mask. The coordinates are normalized with respect to the width and
height of the image.

Similar to the method that we used for object detection, the generation of the
mask coordinates is also needed for the cylindrical and rectilinear images. An ex-
ample of an annotated fisheye image with the masks coordinates for segmentation
can be observed in Figure 5.1a.

We used the segmentation annotation files for the fisheye images and performed
the 2D to 3D projection for the coordinates of the masks in order to get the real-
world space coordinates. The real-world space coordinates were then used to per-
form a cylindrical/rectilinear 3D to 2D projection in order to get the corresponding
mask coordinates for the corresponding cylindrical/rectilinear corrected images. An
example of an annotated cylindrical image can be seen in Figure 5.1b and an exam-
ple of an annotated rectilinear image can be seen in Figure 5.1c.

(a) (b) (c)

Figure 5.1 Example of an annotated (a) - fisheye, (b) - cylindrical, (c) - rectilinear image
from the WoodScape dataset

60



5.2 Original Dataset

5.2 Original Dataset

We used the original fisheye images from WoodScape and their corresponding an-
notations for semantic segmentation as input for YOLO. We initialized the weights
with the ones from COCO. We trained the model for 100 epochs using a batch size
of 16. The reason why we chose a batch size of 16 instead of a batch size of 32 is
the computation capacity limit. The AWS virtual machine was unable to perform
segmentation training with a batch size of 32. As it can be observed in Listing 5.3,
the training took 4.412 hours. The validation results are also displayed in Listing
5.3.
100 epochs completed in 4.412 hours.
Model "summary: 165 layers , 7419998 parameters , 0 gradients , 25.8 GFLOPs:

Class Images Instances Box(P R mAP50 mAP50 -95) Mask(P R mAP50 mAP50 -95)
all 821 3826 0.606 0.355 0.388 0.208 0.533 0.282 0.296 0.131

road 821 5360 0.677 0.284 0.354 0.225 0.565 0.207 0.231 0.166
lanemarks 821 16534 0.578 0.413 0.443 0.249 0.468 0.301 0.31 0.14

curb 821 3401 0.623 0.342 0.378 0.218 0.409 0.201 0.187 0.0607
person 821 2316 0.642 0.274 0.333 0.159 0.56 0.21 0.246 0.0933
rider 821 710 0.7 0.321 0.383 0.16 0.595 0.238 0.266 0.0679

vehicles 821 6789 0.716 0.616 0.666 0.418 0.714 0.565 0.625 0.349
bicycle 821 1895 0.461 0.29 0.281 0.128 0.445 0.244 0.228 0.0798

motorcycle 821 606 0.623 0.299 0.344 0.17 0.639 0.268 0.301 0.116
traffic_sign 821 654 0.435 0.355 0.309 0.143 0.407 0.3 0.27 0.102

Listing 5.3 Semantic segmentation validation results of the original fisheye dataset from
WoodScape using YOLOv5 as the training model. The picture shows for each class the
number of images used for validation, the number of instances, precision (P), recall (R),
mAP50 and mAP50-95 scores for both the boxes and the segmentation masks.

Figure 5.2 Distribution of class instances for semantic segmentation in the original fisheye
images from WoodScape. The most represented class is the lanemraks class, followed by the
vehicles class. At the opposite pole, there is the motorcycle class.

As it can be noticed in Listing 5.3, there are two sets of metrics: one is referring
to the bounding boxes (this one was also used in our previous results, when doing

61



Chapter 5. Semantic Segmentation

only object detection) and the other one is referring to the segmentation mask. For
the bounding box results, the overall precision is 0.606, the recall is lower at 0.355
(meaning that a significant number of the objects are not detected), and the mAP50
is 0.388. As for the masks, the overall precision is 0.533, the recall is 0.282, and
the mAP50 is 0.296. Also, as it can be seen in Figure 5.2, the dataset is imbalanced,
having significantly more instances of lanemarks and vehicles than the other classes.
The least represented classes are the motorcycle, rider, and traffic_sign.

Figure 5.3a provides a plot of the precision-recall curve for the bounding boxes.
The results on the right correspond to the class mAP50. The best results are achieved
by the vehicles (0.666) and the lanemarks (0.443) classes. The worst results are ob-
tained by the bicycle (0.282), traffic_sign (0.309), and person (0.333) classes. Figure
5.3b illustrates the precision-recall curve for the masks, having the corresponding
mAP50 results on the right side. The best results are again achieved by the vehicles
(0.625) and the lanemarks (0.310) classes. The vehicles have the largest area under
the curve for both boxes and masks. The worst results for the masks are obtained
for the curb (0.187), bicycle (0.228), and road (0.231) classes.

The confusion matrix can be observed in Figure 5.4. The vehicles class achieves
again the best results, 62% of the vehicles being correctly identified. The lanmearks
class has the second best results, even though 56% of the instances are classified
as background. The rest of the classes have even worse results. For example, 68%
of the road and person instances failed to be detected. However, these results are in
accordance to the low values for recall.

Figure 5.5a presents the F1 curve for the bounding boxes. As expected, the
vehicles achieve again the best performance, the F1 score significantly decreasing
after a confidence score of approximately 0.5. Overall, for all classes, the F1 score
decreases after a confidence score of 0.277. Similarly, Figure 5.5b presents the F1
curve for the masks. The F1 score for the vehicles significantly decreases after a
confidence score of 0.55, while the F1 score for all classes decreases a lot after a
confidence score of 0.295.

Figure 5.6 presents the training and validation results, illustrating the evolution
of the box, segmentation, object, and class losses, as well as the evolution of the
precision, recall, and mAP50 for both the bounding boxes and the masks. In general,
the performances stop improving after around 87 epochs. The box loss is around
0.083, the segmentation loss is around 0.0573, the object loss is around 0.107, and
the class loss is approximately 0.0225.

Some segmentation examples can be seen in Figure 5.7. In Figure 5.7a, the
model fails to detect the bus and some lanemarks, but it is pretty good at detecting
the other objects. In Figure 5.7b the model misses some vehicles from the left cor-
ner, where the distortion is stronger. Some strongly distorted objects are also missed
from Figure 5.7c.

62



5.2 Original Dataset

(a)

(b)

Figure 5.3 Precision-recall curve after performing semantic segmentation on the original
fisheye dataset: (a) for the bounding boxes, (b) for the segmentation masks. The results in
the top right corner correspond to the mAP50 scores. For both the boxes and masks, the
vehicles (brown) achieve the best AP sore. The bicycle class (pink) has the lowest AP for the
bounding boxes, while the curb (green) and the road (blue) classes have the lowest AP for
the segmentation masks.

63



Chapter 5. Semantic Segmentation

Figure 5.4 Confusion matrix after performing semantic segmentation on the original fisheye
dataset. The vehicles have the highest true positive rate, while the road has the lowest true
positive rate.

64



5.2 Original Dataset

(a)

(b)

Figure 5.5 F1-confidence curve after performing semantic segmentation on the original fish-
eye dataset: (a) for the bounding boxes, (b) for the segmentation masks. The vehicles (brown)
have the highest F1 score for both the boxes and the masks. The bicycle class (pink) has the
lowest F1 score for the bounding boxes, while the curb (green) has the lowest F1 score for
the segmentation masks.

65



Chapter 5. Semantic Segmentation

Figure 5.6 The evolution of box, segmentation, object, class loss, as well as precision, recall,
mAP50, mAP50-95 for training and validation when performing semantic segmentation on
the original fisheye dataset

66



5.2 Original Dataset

(a) (b)

(c)

Figure 5.7 Example of segmentation result when using the original fisheye images. Most
objects are detected, but it fails to detect some objects in the corners, where the distortion is
more visible. Notice that the bounding boxes do not fit for every object (e.g. the bounding
box for the road covers almost the whole picture).

67



Chapter 5. Semantic Segmentation

5.3 Cylindrical Rectification

The segmentation results when using the cylindrical corrected images can be ob-
served in Listing 5.4. We considered again 100 epochs and a batch size of 16. The
COCO weights were used for initialization. As it can be noticed in Listing 5.4, the
training took 3.839 hours. The overall results for the bounding boxes are the fol-
lowing: a precision of 0.559, a recall of 0.308, and a mAP50 of 0.332. The overall
results for the masks are the following: a precision of 0.5, a recall of 0.246, and a
mAP50 of 0.26.
100 epochs completed in 3.839 hours.
Model summary: 165 layers , 7419998 parameters , 0 gradients , 25.8 GFLOPs:

Class Images Instances Box(P R mAP50 mAP50 -95) Mask(P R mAP50 mAP50 -95)
all 798 36830 0.559 0.308 0.332 0.167 0.5 0.246 0.26 0.11

road 798 5156 0.619 0.245 0.292 0.182 0.591 0.21 0.243 0.136
lanemarks 798 15759 0.549 0.323 0.348 0.18 0.435 0.236 0.249 0.114

curb 798 3316 0.595 0.275 0.297 0.149 0.505 0.211 0.22 0.0826
person 798 2248 0.561 0.22 0.257 0.102 0.546 0.183 0.22 0.0795
rider 798 675 0.608 0.241 0.308 0.119 0.478 0.156 0.179 0.0444

vehicles 798 6633 0.68 0.614 0.654 0.405 0.627 0.531 0.572 0.304
bicycle 798 1832 0.443 0.264 0.258 0.114 0.418 0.218 0.204 0.071

motorcycle 798 576 0.59 0.262 0.315 0.152 0.601 0.236 0.273 0.105
traffic_sign 798 635 0.387 0.324 0.263 0.101 0.294 0.231 0.176 0.0563

Listing 5.4 Semantic segmentation validation results of the cylindrical corrected dataset
using YOLOv5 as the training model. The picture shows for each class the number of images
used for validation, the number of instances, precision (P), recall (R), mAP50 and mAP50-95
scores for both the bounding boxes and the segmentation masks.

Figure 5.8a presents the precision-recall curve for the bounding boxes with the
corresponding mAP50 results (right side). The vehicles have the largest area under
the curve, with a mAP50 of 0.654. The worst results are obtained by the person
(0.257), the bicycle (0.258), and the traffic_sign (0.263) classes. As for the mask
results, they can be seen in Figure 5.8b. The vehicles have again the highest score
(0.572). The classes with the lowest score are: traffic_sign (0.176) and rider (0.179).

The confusion matrix can be found in Figure 5.9. The best performances are
achieved by the vehicles class, 60% of them being correctly classified. The worst
results are obtained by the person (only 22% of them are correctly identified), the
rider (23% of the instances are correctly classified), and the road (24% are classified
accordingly) classes.

The F1 score for the bounding boxes can be seen in Figure 5.10a. The vehicles
have the best results, the F1 score quickly decreasing after a confidence score above
0.5. The F1 score decreases after a confidence score above 0.241. The F1 score for
the masks can be observed in Figure 5.10b. Once again, the vehicles have the best
results. The F1 score for the vehicles decreases after a confidence score of above
0.55, but the F1 score for all classes significantly decreases after a confidence score
of above 0.255.

The training and validation results can be analyzed in Figure 5.11. The valida-
tion box loss is around 0.095, the segmentation loss is approximately 0.0623, the
object loss is near 0.070, and the class loss is 0.022.

Some examples of segmentation results can be seen in Figure 5.12. The results

68



5.3 Cylindrical Rectification

(a)

(b)

Figure 5.8 Precision-recall curve after performing semantic segmentation on the cylindrical
corrected dataset: (a) for the bounding boxes, (b) for the segmentation masks. The results on
the top right corner correspond to the mAP50 scores. The vehicles class (brown) achieves the
best AP score for both the bounding boxes and the segmentation masks. The lowest APs for
the bounding boxes are obtained by the person class (red) and the bicycle (pink) classes. The
lowest APs for the segmentation masks are obtained by the traffic sign (light green) and the
rider (purple) classes.

69



Chapter 5. Semantic Segmentation

Figure 5.9 Confusion matrix after performing semantic segmentation on the cylindrical cor-
rected dataset. The highest true positive rate is achieved by the vehicles class, while the class
with the lowest true positive rate is the person class.

from Figures 5.12a and 5.12b are very similar to the results from Figures 5.7a and
5.7b. Some lanemarks failed to be identified in Figure 5.12c (compared to Figure
5.7c).

70



5.3 Cylindrical Rectification

(a)

(b)

Figure 5.10 F1-confidence curve after performing semantic segmentation on the cylindrical
corrected dataset: (a) for the bounding boxes, (b) for the segmentation masks. The class
with the highest F1 score for both the boxes and the masks is the vehicles class (brown).
The person class (red) has the lowest F1 score for the bounding boxes, while the rider class
(purple) has the lowest F1 score for the masks.

71



Chapter 5. Semantic Segmentation

Figure 5.11 The evolution of box, segmentation, object, class loss, as well as precision,
recall, mAP50, mAP50-95 for both the bounding boxes and segmentation masks for training
and validation when performing semantic segmentation on the cylindrical corrected dataset

72



5.3 Cylindrical Rectification

(a) (b)

(c)

Figure 5.12 Example of segmentation result when using the cylindrical corrected images.
Most of the objects are detected. Notice that the bounding boxes are tighter than the bounding
boxes obtained from doing object detection.

73



Chapter 5. Semantic Segmentation

5.4 Rectilinear Rectification

Listing 5.5 presents a summary of the segmentation results with YOLO when having
as input the rectilinear corrected images. The model was trained for 100 epochs,
using a batch size of 16 and COCO weights for initialization. As it can be observed,
the training took 3.504 hours. The boxes mAP50 for all classes is 0.392, while the
masks mAP50 is 0.315. The box precision for all classes is 0.604 and the box recall
for all classes is 0.37. The mask precision for all classes is 0.552 and the mask recall
for all classes is 0.303.
100 epochs completed in 3.504 hours.
Model summary: 165 layers , 7419998 parameters , 0 gradients , 25.8 GFLOPs

Class Images Instances Box(P R mAP50 mAP50 -95) Mask(P R mAP50 mAP50 -95)
all 823 25239 0.604 0.37 0.392 0.199 0.552 0.303 0.315 0.13

road 823 3759 0.577 0.247 0.271 0.119 0.405 0.147 0.126 0.0423
lanemarks 823 10237 0.575 0.35 0.369 0.182 0.464 0.25 0.253 0.108

curb 823 2588 0.613 0.281 0.301 0.129 0.527 0.209 0.213 0.0648
person 823 1622 0.627 0.352 0.388 0.186 0.635 0.317 0.352 0.143
rider 823 451 0.646 0.384 0.439 0.203 0.644 0.322 0.345 0.103

vehicles 823 4356 0.749 0.637 0.686 0.443 0.729 0.575 0.629 0.342
bicycle 823 1315 0.521 0.345 0.341 0.171 0.523 0.301 0.311 0.121

motorcycle 823 411 0.641 0.34 0.378 0.197 0.595 0.278 0.322 0.145
traffic_sign 823 500 0.484 0.398 0.353 0.158 0.45 0.328 0.286 0.104

Listing 5.5 Semantic segmentation validation results of the rectilinear corrected dataset
using YOLOv5 as the training model. The picture shows for each class the number of images
used for validation, the number of instances, precision (P), recall (R), mAP50 and mAP50-95
scores for both the bounding boxes and the segmentation masks.

Figure 5.13 Distribution of class instances for semantic segmentation in the rectilinear cor-
rected images (right) compared to the distribution of class instances in the original fisheye
images (left). Observe the reduction of the number of instances caused by cropping (com-
pared to the number of instances in Figure 5.2).

The drastic reduction in the number of objects due to cropping the images can
be noticed in Figure 5.13. While the original dataset contained 120000 instances for
lanemarks and 60000 instances for vehicles (see Figure 5.2), the rectilinear images

74



5.4 Rectilinear Rectification

have only 80000 instances of lanemarks and 40000 instances of vehicles.

(a)

(b)

Figure 5.14 Precision-recall curve after performing semantic segmentation on the rectilinear
corrected dataset: (a) for the bounding boxes, (b) for the segmentation masks. The results on
the top right corner correspond to the mAP50 scores. The vehicles (brown) perform the best
for both boxes and masks, while the road class (blue) performs the worse.

The precision-recall curve for the bounding boxes is illustrated in Figure 5.14a,
having the corresponding class mAP50 on the right side. The vehicles achieved the
best results, having a mAP50 of 0.686. The worst results are obtained by: road with

75



Chapter 5. Semantic Segmentation

a mAP50 of 0.271 and curb, having a mAP50 of 0.301. Figure 5.14b presents the
precision-recall curve for the masks, with their corresponding class mAP50 on the
right side. The vehicles have the best performance, with a mAP50 of 0.629. The
classes with the poorest mAP50 are: road with 0.126 and curb with 0.213.

The confusion matrix can be analyzed in Figure 5.15. 63% of the vehicles are
correctly classified. At the opposite side, only 26% of the road instances and 29%
of the curbs are correctly classified.

Figure 5.15 Confusion matrix after performing semantic segmentation on the rectilinear cor-
rected dataset. The vehicles class has the highest true positive rate, while the road class has
the lowest true positive rate.

Figure 5.16a illustrates the F1 curve for the bounding boxes. The F1 score for
vehicles, the class that performs the best, significantly decreases after a confidence
score of 0.57. The F1 score for all classes drops after a confidence score of 0.283.
The F1 curve for the masks can be seen in Figure 5.16b. The F1 score for the
vehicles quickly decreases after a confidence score of 0.7. For all classes, the F1
score quickly decreases after a confidence score of 0.310.

The training and validation evolution can be observed in Figure 5.17. The vali-

76



5.4 Rectilinear Rectification

(a)

(b)

Figure 5.16 F1-confidence curve after performing semantic segmentation on the rectilinear
corrected dataset: (a) for the bounding boxes, (b) for the segmentation masks. The vehicles
class (brown) has the highest F1 score for both the bounding boxes and the segmentation
masks, while the road (blue) has the worst performances.

77



Chapter 5. Semantic Segmentation

dation box loss is around 0.083, the validation segmentation loss is approximately
0.0625, the validation object loss is 0.068, and the validation class loss is 0.02006.

Figure 5.17 The evolution of box, segmentation, object, class loss, as well as precision, re-
call, mAP50, mAP50-95 for training and validation when performing semantic segmentation
on the rectilinear corrected dataset

Some examples of segmentation results can be seen in Figure 5.18. Compared
to Figures 5.7 and 5.12, the vehicles are better identified. On the other hand, the
road is completely missed. The lanemarks are in a similar situation as well, Figure
5.18c being the only one with an identified lanemark.

78



5.5 Analysis of Segmentation Results

(a) (b)

(c)

Figure 5.18 Example of segmentation result when using the rectilinear corrected images.
Observe that the road and the lanmeraks are not detected. However, the bounding boxes are
tighter than the bounding boxes obtained from doing object detection.

5.5 Analysis of Segmentation Results

5.5.1 Heat Map
An initial hypothesis concerning the shortcomings of our algorithm was that object
detection and segmentation would be significantly worse in the corners. This came
from the intuitive understanding that objects near the periphery were heavily dis-
torted compared to objects near the center. In order to better understand the nature
of the segmentation errors, and to test the hypothesis, a heatmap of the false regions
across all test images was created for each individual camera view. The false regions
are defined as the symmetric difference between the ground truth and the prediction
masks (see Figure 5.19).

After summing the errors across all images in the test set, the log of the heatmap
was calculated and subsequently rescaled to the range [0,255], as the rendering tool
used expected 8-bit intensity values. The log of the image is used in an effort to
increase resolution between low errors. The shifted histogram can be seen in Figure

79



Chapter 5. Semantic Segmentation

5.20.
From Figure 5.21 it is obvious that errors are concentrated in local regions. For

example, in all four images, the region where the road is most often observed has a
much lower error rate than regions on the far periphery where many different and
much smaller objects are commonly seen. It is not clear however that errors are
concentrated at the far periphery. For example, in Figure 5.21a the highest concen-
tration of segmentation errors seems to be concentrated at the center of the image.
And while we do see a concentration of errors at the far periphery in Figures 5.21c
and 5.21d, this can also be explained by the camera’s downward orientation, result-
ing in objects far from the car being rendered primarily in these regions to begin
with.

Figure 5.19 A diagram of the symmetric difference between two sets. Here A and B can be
seen as the ground truth and prediction masks, respectively.

(a) Original histogram (b) Log-scaled histogram

Figure 5.20 Histograms of the distribution of errors before and after the logarithmic rescal-
ing. Notice that the y-axis is shown in log-scale. With that in mind, it is apparent that the
errors originally follow an exponential decay. After the log-scaling of the data, we get a dis-
tribution which spreads the low value errors across a wider range, effectively increasing the
visibility of the majority of our error values.

80



5.5 Analysis of Segmentation Results

(a) Front View (b) Rear View

(c) Mirror View - Left (d) Mirror View - Right

Figure 5.21 Example of segmentation result when using the original fisheye images. It can
be seen in Figures 5.21c and 5.21d that errors are high for both mirror views at the periphery
of the image, however, this is likely caused by the downward orientation of the camera. When
the camera is orientated in this way, objects which are on the same ground plane but farther
away will naturally be rendered at angles far from the principal axis of the lens.

5.5.2 Comparing the Models trained on Fisheye vs. Rectilinear
Images

To better understand exactly how the two models are working, it is helpful to ob-
serve additional statistics besides the mAP. In this case, the average number of ob-
servations vs. successful detections (where the model segmented the object with an
IoU w.r.t. ground truth above 0.5) was compared within the cropped field of view of
the rectilinear image. An illustration is provided along with the averaged results be-
low. Fisheye to Rectilinear (FTR) are the predictions from the fisheye model which
have been mapped to the rectilinear space for comparison. Additionally, observa-
tions denoted in Table 5.1 are the number of times the model predicts the existence
of a class, whereas detection denotes an IoU between prediction and ground truth
above 0.5. All statistics in the table are averaged across 112 test images. From Table
5.1 it is clear that the rectilinear model is performing better

81



Chapter 5. Semantic Segmentation

FTR Rect.
Num. Observed (> 70% confidence) 3.14 3.62

Num. Detected (IoU > 0.50) 2.29 3.13
Accuracy (mAP50) 0.655 0.724

Table 5.1 The average values reported were taken using the 112 test images that were found
to be in both the fisheye and rectilinear image directories. Accuracies are higher than normal
since ’road’ and ’lane line’ classes have been removed from this evaluation and predictions
have been pre-filtered for those which the model gave a confidence above 70%. The main
takeaway, however, should be that the rectilinear model is superior to the fisheye model within
it’s narrower field of view. This weakens the argument that the fisheye model is primarily
failing to detect objects at the far periphery.

Figure 5.22 Areas marked in green show the false positive and false negative regions of the
fisheye model’s predictions. Areas marked in purple show the same for the rectilinear model,
with predicted segmentations that have been mapped back to the fisheye distortion. There
is no discernible difference in error between the two models that can be gathered from this
image alone.

Images for the falsely segmented regions of both models were provided on the
same image in Figure 5.22 and 5.23. Rectilinear false segmentations are in purple
and fisheye false segmentations are in green. This explains why only green markings
exist at the image’s far periphery. That is, the rectilinear model, whose predictions

82



5.6 Fair Model Comparison

Figure 5.23 Supplementary to figure 5.22

have to be mapped back to the fisheye perspective, works on a narrower field of
view and thus doesn’t provide predictions for areas at the far periphery.

5.6 Fair Model Comparison

When performing the above experiments with the rectified datasets, the metrics
produced by YOLO do not reference the same ground truth compared to the original
fisheye images. The original fisheye annotations suffer some changes due to the
projection step (described earlier in Chapter 3) due to the reduction in field of view
(very noticeable in Figure 5.1c). Consequently, a comparison between the above
validation results will not be completely fair, since there are completely different
datasets, with different annotations and field of view.

Taking into account these observations, one way to compare the performances
of the models described above would be to take the predictions made by YOLO and
remap them back to a fisheye image. This can be done in a similar way to the anno-
tation conversion described in the beginning of this chapter. The world coordinates
are now obtained by doing a 2D to 3D projection of the predicted cylindrical/rec-
tilinear polygon coordinates. Afterwards, a 3D to 2D projection is done in order to
get the fisheye polygon coordinates. An example of how the remapping to fisheye

83



Chapter 5. Semantic Segmentation

looks like can be seen in Figure 5.24. The effect of the reduction in the field of view
is noticeable in Figure 5.24a. Not only are some objects entirely missed (i.e. bicy-
cles, people), but some objects also get cropped (i.e. the road, the van on the right
side).

(a) (b)

Figure 5.24 Example of segmentation result when remapping the predicted polygon coordi-
nates to fisheye from rectilinear (a) and cylindrical (b) corrected images. Notice the effect of
the reduction in the field of view in the rectilinear projection (missed or cropped objects in
Figure 5.24a).

At this point, the new predictions are actually the remapped polygon coordinates
and their corresponding class. The ground truth is the original fisheye ground truth.
Therefore, a fair comparison can be made, since the reference is the same (the fish-
eye ground truth), no matter what rectification technique was used. It is also worth
mentioning that the comparison uses the test set, as opposed to the validation set,
which was used to produce the previous metrics.

A good metric for evaluating the performance of the detection and segmenta-
tion models is mAP. We implemented a custom version of mAP in order to compare
our models. Firstly, we iterated through all the predictions and computed the in-
tersection over union (IoU) with the corresponding object in the ground truth. If
the IoU score was greater than 0.5, we classified the prediction as a true positive.
Then, for each class, we computed the precision and the recall, also plotting the
precision-recall curves. Lastly, the mAP was computed as the averaged area under
the precision-recall curve.

The results of the evaluation can be seen in Figure 5.25. Figure 5.25a presents
the precision-recall curve of the test set from the model using the fisheye images.
The mAP results are listed on the right side. As it can be seen, the class with highest
mAP is the vehicles class, with a score of 0.644. The classes with the lowest scores
are curb (0.132) and lanemarks (0.139). The mAP for all classes is 0.318. Figure
5.25b illustrates the precision-recall curve of the test set from the model using the
remapped cylindrical predictions. The class with the highest mAP is the vehicles

84



5.6 Fair Model Comparison

class, with a score of 0.575. The lanemarks and the curb classes have the lowest
scores (0.122 and 0.108, respectively). It should be noticed that all classes have ac-
tually lower mAP scores than the mAPs of the models trained on the fisheye images.
The mAP for all classes is 0.27 (vs. 0.318 with the model using the fisheye images).
The precision-recall curve of the test set from the model using the remapped rec-
tilinear images can be seen in Figure 5.25c. The class with the highest mAP is the
person class (0.039), while the classes with the lowest scores are the road (0.003)
and the curb (0.002). The mAP for all classes is 0.020. The poor performance is
because of the reduction in the field of view.

85



Chapter 5. Semantic Segmentation

(a)

(b)

(c)

Figure 5.25 Precision-recall curves from the test set after performing semantic segmentation:
(a) - original fisheye, (b) - remapped predictions from the cylindrical images, (c) - remapped
predictions from the rectilinear images. The values on the top right corner correspond to the
mAP50 scores. The model trained on the fisheye images still achieves the best mAP, followed
by the model trained on the cylindrical corrected images. The loss in the field of view is also
noticeable in the precision-recall curve for the rectilinear predictions.

86



6
Tiled Rectification

This chapter describes another rectification approach, in which the fisheye image is
divided into tiles. Each tile is a rectilinear mapping of the original image at varying
projection angles. With this approach, the subject’s scale and FOV are both main-
tained during rectification. YOLOv5 was again used for segmentation and training
was carried out on each tile individually. In order to compare the performance of
the tile approach with the above methods, it was necessary to merge the predicted
segmentations from each tile in a scene.

6.1 Introduction

While the rectilinear model may have achieved the best numerical results out of
the three models presented so far, the comparison is not entirely valid, as the orig-
inal FOV is much smaller. Objects that were cut off by the limited FOV were also
removed from the ground truth, meaning that between the fisheye model and the
rectilinear model, they do not even share the same problem space. If we were to
re-evaluate the rectilinear model by including the ground truth objects that were
not visible due to rectification, the performance would be significantly worse, as
revealed in Table 6.1.

Ground Truth mAP50
Cropped 0.315
Original 0.020

Table 6.1 The mean average precision across all images and classes of the rectilinear model.
Cropped ground truth being the ground truth which only includes objects fully within the
cropped FOV. Whereas, ’original’ means that the model is evaluated with respect to the orig-
inal ground truth.

If the field of view were maintained during rectilinear mapping, objects at the
center of the image would become too small and therefore harder to detect, thus pre-
senting new problems. Instead, a more reasonable approach might be to discretize

87



Chapter 6. Tiled Rectification

the problem into multiple rectilinear mappings at different angles, evenly spaced
across the field of view. We will call these different mappings, ’tiles’. Considering
the specific dataset we used, it was only necessary to produce three tiles, spaced hor-
izontally, for the front and rear cameras and six tiles, composed of two horizontal
rows of three tiles each, for the left and right mirror cameras.

6.2 Adapting the Annotations

In order to get the proper ground truth annotations for each tile, we use the same
rectilinear mapping functions as with the image rectification, with some additional
processing to handle any cropped segmentations. When mapping the 3D world co-
ordinates to the rectilinear image space, any points with a negative Z (from the 3D
world coordinates) are filtered, as this would otherwise result in inverted annotations
from the opposite end of the fisheye FOV being projected as well. After getting the
rectilinear image coordinates for the objects with positive Z, they are filtered again
for any segmentations which lay completely outside the tile’s FOV. And finally,
segmentations which lay partially outside the FOV get their exterior coordinates
translated to the perimeter of the image, resulting in a fully adapted ground truth.

(a) (b) (c)

Figure 6.1 Example of annotated tiles corresponding to a fisheye image. The image was
taken with the front view camera.

An example of rectilinear annotated tiles can be seen in Figure 6.1. We chose
not to tile the upper and lower parts of the image, as they don’t have any important
information (the upper part has only buildings and the lower part has only the road
or parts of the car itself). Apart from this, it can be noticed that this method of
rectifying the image preserves the original field of view. On the other hand, there
are a lot of overlapping areas. The solution to the overlapping area is discussed with
more detail in Section 6.4

The angles x,y and z, used to create the rotation matrices, are documented in
Table 3.1 and include a unique set of angles depending on the camera angle. See
equations 3.14, 3.15, 3.16 for reference. The sets of angles used for each camera are

88



6.3 YOLO Results

α = [−62,0,62], (6.1)
β = [0,41]. (6.2)

6.3 YOLO Results

We generated tiles for every fisheye image, using them together with the corre-
sponding annotations as input to YOLO. The COCO weights were used for initial-
ization. The model was trained for 100 epochs using a batch size of 16. The training
took roughly 15 hours and the validation results can be noticed in Listing 6.1. The
additional time in training can be attributed to the now larger dataset composed of
tiles from each original frame.
Class Images Instances Box(P R mAP50 mAP50 -95) Mask(P R mAP50 mAP50 -95)

all 3669 65492 0.702 0.487 0.541 0.326 0.671 0.423 0.457 0.226
road 3669 10766 0.784 0.485 0.576 0.43 0.715 0.402 0.44 0.317

lanemarks 3669 26742 0.698 0.549 0.594 0.353 0.599 0.43 0.442 0.203
curb 3669 6643 0.691 0.413 0.473 0.287 0.522 0.278 0.265 0.0889

person 3669 3817 0.732 0.397 0.496 0.268 0.716 0.35 0.425 0.185
rider 3669 1092 0.73 0.477 0.521 0.269 0.742 0.429 0.451 0.162

vehicles 3669 11525 0.807 0.706 0.774 0.539 0.817 0.676 0.745 0.477
bicycle 3669 3073 0.614 0.44 0.468 0.244 0.635 0.401 0.434 0.179

motorcycle 3669 946 0.722 0.444 0.508 0.296 0.741 0.409 0.48 0.224
traffic_sign 3669 888 0.54 0.47 0.461 0.252 0.548 0.43 0.428 0.196

Listing 6.1 Semantic segmentation validation results of the rectilinear image tiles using
YOLOv5 as the training model. The picture shows for each class the number of images used
for validation, the number of instances, precision (P), recall (R), mAP50 and mAP50-95
scores for both the bounding boxes and the semantic segmentation.

Figure 6.2 Distribution of class instances for semantic segmentation in the rectilinear image
tiles (right) compared to the distribution of class instances in the original fisheye images
(left). Notice the increase in the number of instances due to overlapping objects.

89



Chapter 6. Tiled Rectification

As it can be seen in Listing 6.1, the box precision for all classes is 0.702 and the
box recall is 0.487. The mask precision for all classes is 0.671 and the mask recall is
0.423. The boxes mAP50 for all classes is 0.541, while the masks mAP50 is 0.457.

(a)

(b)

Figure 6.3 Precision-recall curve after performing semantic segmentation on the rectilinear
image tiles: (a) for the bounding boxes, (b) for the segmentation masks. The results on the top
right corner correspond to the mAP50 scores. The vehicles (brown) achieve the best results
for both the bounding boxes and the segmentation masks. The traffic sign (light green) has
the lowest AP for the bounding boxes, while the curb (green) has the lowest AP for the
segmentation masks.

90



6.3 YOLO Results

The number of instances in the dataset is shown in Figure 6.2. The original
dataset contained 120000 instances for lanemarks and 60000 instances for vehicles.
The tiles have some overlapping objects, consequently the number of lanemarks is
now around 200000 and the number of vehicles is around 90000.

Figure 6.3a pictures the precision-recall curve for the bounding boxes, having
the corresponding mAP50 on the right side. The highest score corresponds to the
vehicles class - 0.774, while the lowest score corresponds to traffic sign class -
0.461. The precision-recall curve for the masks can be seen in Figure 6.3b. The
vehicles have again the highest mAP50 - 0.745. The lowest mAP50 corresponds to
the curb class - 0.265.

The confusion matrix can be seen in Figure 6.4. 72% of the vehicles are correctly
classified, but only 42% of the people are correctly identified. Also, 58% of the
traffic sign instances and 57% of the curb instances are missed.

Figure 6.4 Confusion matrix after performing semantic segmentation on the rectilinear im-
age tiles. The vehicles class has the highest true positive rate, while the curb class has the
lowest rate.

Figure 6.5a illustrates the F1 curve for the bounding boxes. Once again, the class

91



Chapter 6. Tiled Rectification

(a)

(b)

Figure 6.5 F1-confidence curve after performing semantic segmentation on the rectilinear
image tiles: (a) for the bounding boxes, (b) for the segmentation masks. The vehicles class
(brown) has the highest F1 score for both the bounding boxes and the segmentation masks.

that performs the best is the vehicles class. The F1 score for the vehicles decreases
after a confidence score of roughly 0.6. The F1 score for all classes drops after a
confidence score of 0.275. Figure 6.5b pictures the F1 curve for the masks. The F1
score for the vehicles decreases after a confidence score of approximately 0.6, while
the F1 score for all classes decreases after a confidence score of 0.308.

The training and validation evolution can be observed in Figure 6.6. The vali-

92



6.4 Tile Merging

dation box loss is approximately 0.048, the validation segmentation loss is roughly
0.040, the validation object loss is around 0.059, and the validation class loss is
0.013.

Figure 6.6 The evolution of box, segmentation, object, class loss, as well as precision, recall,
mAP50, mAP50-95 for training and validation when performing semantic segmentation on
the rectilinear image tiles

6.4 Tile Merging

The metrics provided above (see Section 6.3) come directly from the training pro-
cess and are referencing a modified ground truth. To produce a fair comparison
between the different models, we would need to use the same ground truth each
time. There is also an overlap bias. That is, objects detected in the regions of tiles

93



Chapter 6. Tiled Rectification

which overlap with each other would be counted twice when averaging the results.
Double counting instances which show up in multiple tiles could skew the results
of our evaluation and therefore needs to be addressed. In order to make a fair com-
parison with the other models, it is necessary to merge the predicted segments from
each tile into a combined collection of predictions for the entire field of view.

This is done by mapping the rectilinear tiles back to the fisheye space, taking
into consideration each tile’s unique rotation matrix (see Section 3.4). An example
of the remapped predictions from each tile can be seen in Figure 6.8. The specific
details around how overlapping segments were merged are covered in Section 6.4.1

One thing to consider when mapping predictions back to the fisheye space from
separate tiles is that overlapping segmentations from different tiles might predict
different classes. An active approach to handling this edge case was explored, par-
ticularly for segmentations that overlapped significantly. Overlapping segmenta-
tions with an IoU greater than 0.5 and whose predicted classes are dissimilar were
merged, with the highest confidence segmentation propagating their class to the
merged result. However, this approach provided negligible benefit and was turned
down in place of simply letting dissimilar but overlapping segmentations remain in
the merged prediction space.

6.4.1 Execution
Merging the predicted segments seems a lot easier in theory than it is to carry out
in practice. To best address this challenge, each segmentation, across all tiles, can
be seen as a node in an unconnected graph. Our job is to connect nodes whose
segmentation overlaps, at least once, with any other node’s segmentation from a
different tile. Thanks to the non-maximum suppression from the YOLOv5 output,
there is no chance of segmentations overlapping within a single tile.

The connectedness can be stored in an adjacency matrix Apoly ∈ Bn×n, where
n is the number of segmentations across all tiles in a given scene. An additional
adjacency matrix Atile ∈ Bm×m is created, where m is the number of tiles, and is
used to store information about which tiles are overlapping. Atile remains constant
respective to the given camera angle. Since the front and rear camera’s use only
three tiles and the side mirror cameras use six, different adjacency matrices were
used respectively. Representations of the tile overlap can be seen in Figure 6.7 and
the associated adjacency matrices Apoly can be found under Equation 6.3:

Apoly =

0 1 0
1 0 1
0 1 0

 , Apoly =


0 1 1 1 1 0
1 0 1 1 1 1
1 1 0 0 1 1
1 1 0 0 1 0
1 1 1 1 0 1
0 1 1 0 1 0

 . (6.3)

94



6.4 Tile Merging

(a) Front View (b) Mirror View – Right

Figure 6.7 Representation of the area that each rectilinear tile covers in the fisheye space.
The front and rear cameras only have three tiles, as can be seen in Figure 6.7a. The two side
mirror cameras use six tiles due to their unique orientation w.r.t. the road, as can be seen in
Figure 6.7b.

(a) Unmerged segmentations (b) Merged segmentations

Figure 6.8 An illustration of the merging of segments from the separate tiles into one ho-
mogenous set of segmentations. The left image includes unmerged segmentations from all
tiles, mapped back to the fisheye space, and the right image shows the resultant set of seg-
mentations after merging any overlapping instances. Due to our specific tiling arrangement,
there is clearly a missing segmentation for part of the road just in front of or behind the car.
This could easily be addressed with another row of three tiles, as with the side mirror cam-
eras. Note that coloring is only meant to distinguish between segmentation instances and is
not representative of the instance’s class.

95



Chapter 6. Tiled Rectification

(a) (b) (c) (d)

Figure 6.9 Illustration of the depth first search algorithm used to merge overlapping seg-
mentations from the different tiles. The algorithm iterates through the adjacency matrix Apoly
starting at the first segmentation instance and performs a depth-first search for any instances
which overlap it (seen in Figure 6.9c). Shown above are the first four iterations of the algo-
rithm, going through each instance sequentially. Any previously observed instance is saved
in memory (as shown in gray) and skipped at future iterations of the loop.

The last step is to run through the newly constructed adjacency matrix Apoly
for the given scene and merge the overlapping segmentations. The algorithm which
inspired our approach is called depth-first search, but unlike our problem, pertains to
graphs which are fully connected [47]. For our particular problem, the depth-wise
search is best illustrated in Figure 6.9. In short, the matrix iterates through each
segmentation and searches for other connected segmentations depth-wise, merges
those segmentations if necessary and finally stores the merged segmentations in
memory so that they may be skipped at a later stage.

Once the merging is complete, we use the same process as with all the other
models to compute the average precision (AP) and mean-average precision (mAP)
performance metrics. The theory for which is covered in Section 5.6. Results from
predictions on the test set showed a dramatic improvement over any previously
tested method. A plot of the precision-recall curve can be seen on Figure 6.10.

From these results, it is again made clear that convolutional neural networks
perform best on rectilinear images.

96



6.4 Tile Merging

Figure 6.10 Plot of the precision-recall curve for the tiled rectification method. The numbers
in the top right corner correspond to the mAP scores. This method performed best in all
classes except for road. This is likely due to the tile configuration used for the front and rear
cameras as seen in Figure 6.7a, which excludes a section of road nearest to the vehicle.

97



7
Conclusion and Discussion

7.1 Summary of Experiments

In this thesis, we aimed to develop an improved way of doing object detection
and segmentation with fisheye distorted images. We chose to use the WoodScape
dataset, first analyzing the ground truth for the detection and segmentation tasks
and discovering some labeling issue.

7.1.1 Object Detection
In the first stage of our project, object detection models were compared. The original
WoodScape dataset was used as a baseline to test against two different rectification
models; cylindrical and rectilinear. On the one hand, cylindrical rectification of the
image seems to be a suitable approach because it preserves most of the initial fisheye
field of view while eliminating vertical distortions. On the other hand, the results
obtained after running YOLO with the cylindrical images are similar to the results
obtained with the initial fisheye images. Consequently, there was no improvement
from the object detection point of view.

Model mAP50
Fisheye 0.49

Cylindrical 0.47
Rectilinear 0.54

Table 7.1 The mAP50 scores for the object detection models trained on fisheye, cylindrical
and rectilinear images. The best results are achieved by the model using the rectilinear cor-
rected images. However, this is not a fair comparison, since the ground truth is not the same
for all models due to the change of FOV in the rectified images.

Just by looking at the numerical results from Table 7.1, one could say that the
object detection results are better with the rectilinear corrected image, but they cut
a lot of information from the pictures. Therefore, the ground truth is not the same
as the original one.

98



7.1 Summary of Experiments

Another aspect that is worth noticing is that the bounding boxes for the cylindri-
cal and the rectilinear corrected images are too large, covering a lot of background
as well (see Figures 4.16 and 4.22). This issue stems from the effect undistortion
has on the original annotations from the fisheye images. One way to solve this issue
would be to actually perform semantic segmentation instead of object detection and
extract the bounding box coordinates from the segmentation mask.

7.1.2 Semantic Segmentation
For this next stage of the project, semantic segmentation models were trained using
a completely different ground truth. The shift, originating from a desire to have
better annotations after rectifying the images.

Our baseline for segmentation had the fisheye images and the generated anno-
tations for semantic segmentation. We generated the semantic segmentation anno-
tations for the cylindrical and the rectilinear versions. From the numerical results,
it looked like the model trained on the rectilinear images performed the best. We
did some in depth analysis of the missed objects and the accuracy of the predictions
in order to better understand the results. However, by performing the projections to
the cylindrical and rectilinear domains, we ended up with different ground truths
for the three models. Consequently, we remapped the predictions from the test sets
back to the fisheye space in order to be able to fairly compare the models. We im-
plemented a custom version of mAP for the remapped predictions. When analyzing
the results of the remapped predictions, the model using rectilinear images did not
achieve reasonable results due to the drastic reduction in the FOV.

Therefore, we needed to implement a different rectification method that was
able to both give rectilinear images and to maintain the original FOV. In order to
achieve these goals, we divided the original image into 3 or 6 tiles (depending on the
camera orientation) and we perform a rectilinear rectification for each one of them.
We generated the annotations for the tiles, and we fed the new data into YOLOv5
model. Then we merged the tiles from the test set, and we remapped the predictions
back to fisheye, making sure that there are no overlapping predictions.

The combined results of our four models for semantic segmentation can be ob-
served in Figure 7.1. These results come from evaluating the remapped predictions
from the test sets. The graph pictures the precision-recall curve and the mAP scores
can be seen on the right side. The best score is achieved by the model using the tiles,
having an mAP50 of 0.417. The second-best model is the one trained on the fish-
eye images (i.e., our baseline), with a mAP50 of 0.318. Even though the cylindrical
correction keeps the original FOV, the performance of the model is actually worse
than the baseline, having a mAP50 of 0.270. The model trained on the rectilinear
images has the lowest mAP50, 0.020. The poor result is due to the reduction in the
FOV.

Another aspect worth mentioning is that when we did the tile rectification, we
actually prioritized all the other classes, except for the road (as we actually decided

99



Chapter 7. Conclusion and Discussion

Figure 7.1 Precision-recall curve for the four developed models using the tiles (blue line),
original fisheye (orange line), cylindrical corrected (green line), and rectilinear corrected
(red line) images. The mAP scores are shown on the right side of the picture. The best results
are achieved by the model trained on the tiles (blue). The models trained on the cylindrical
(green) and rectilinear (red) corrected images achieve lower mAPs than the model trained on
fisheye images (orange).

to cut parts of it when dividing the picture). An example of this can be seen in Figure
6.8b.

Figure 7.2 shows the precision-recall curves, as well as the AP results for every
class. As it can be seen in Figure 7.2d, all the classes except for the road have higher
APs than the baseline (Figure 7.2a).

By extracting the AP for the road class from all the models, the new mAP50 can
be seen in Table 7.2. As it can be seen, the model trained on the tiles has the best
score, with a mAP50 of 0.44. The second-best model is the baseline, with a mAP50
of 0.31.

Model mAP50
Fisheye 0.31

Cylindrical 0.26
Rectilinear 0.02

Tiles 0.44

Table 7.2 The mAP50 scores for the segmentation models trained on fisheye, cylindrical,
rectilinear, tiles images when not taking into consideration the AP for the road class. The
best results are again achieved by the model using the tiles.

100



7.1 Summary of Experiments

(a)

(b)

Figure 7.2 Precision-recall curve for the four developed models: (a) model trained on fisheye
images, (b) model trained on cylindrical corrected images, (c) model trained on rectilinear
corrected images, (d) model trained on the tiles. The results in the top right corner correspond
to the mAP scores. The model trained on the tiles achieved the best AP for all classes, except
for the road. The models trained on the cylindrical and rectilinear corrected images achieve
lower APs for each class compared to the model trained on the fisheye images.

101



Chapter 7. Conclusion and Discussion

(c)

(d)

Figure 7.2 Precision-recall curve for the four developed models: (a) model trained on fisheye
images, (b) model trained on cylindrical corrected images, (c) model trained on rectilinear
corrected images, (d) model trained on the tiles. The results in the top right corner correspond
to the mAP scores. The model trained on the tiles achieved the best AP for all classes, except
for the road. The models trained on the cylindrical and rectilinear corrected images achieve
lower APs for each class compared to the model trained on the fisheye images.

102



7.2 Future Work

7.1.3 Bounding Box Comparison
While we noticed that the boxes obtained from the segmentation masks are tighter, it
would also be interesting to compare the mAP50 for the detection and segmentation
w.r.t the bounding boxes.

There are four common classes for both segmentation and detection: vehicles,
person, bicycle, traffic_sign. In order to compare the results, we take the APs for
these classes and we average them in order to get the mAP50 score. We follow this
procedure for the three models that we presented before.

Model mAP50 detection mAP50 segmentation
Fisheye 0.508 0.397

Cylindrical 0.500 0.351
Rectilinear 0.552 0.442

Table 7.3 The bounding box mAP50 scores for the models trained on fisheye, cylindrical,
rectilinear images when taking into consideration the APs for the vehicles, person, bicycle,
traffic_sign classes. The results for the bounding boxes generated from the segmentation
masks are lower. Notice that this is the case also for the model using the fisheye image,
which made us suspect that there are problems with the way the images have been annotated.

As it can be noticed in Table 7.3, the mAP50 of the bounding boxes from detec-
tion are higher than the ones resulted from the segmentation masks. What is even
more interesting, is that this behavior is the same also when using fisheye distorted
images. This can indicate that there is a divergence between the way the pictures
have been annotated for the detection task vs. the segmentation task.

7.2 Future Work

While we may have been successful in improving the semantic segmentation of
fisheye data with our tiling method, other methods which do not require multiple
rectifications might be less computationally expensive. Therefore, our next line of
research would be in training a more advanced neural network architecture which
does not exhibit the same translational invariance constraints as a CNN.

One such architecture which we have identified is deformable convolution, as
mentioned in Section 2.2. Such a method would potentially reduce the computa-
tional overhead of rectifying multiple tiles from each frame. A similar architecture
called FisheyeHDK, mentioned in the same section, uses the deformable convolu-
tion method but constrains the problem slightly by first embedding the learned off-
sets into a hyperbolic Poincare ball. After corresponding with one of the researchers
on the project, we are more confident in implementing our own version of the same
FisheyeHDK architecture. Successful implementation will require custom gradient
functions for updating the learned offsets in PyTorch.

103



Chapter 7. Conclusion and Discussion

Lastly, it is hard not to mention the recent successes of transformer networks. By
tokenizing all forms of data from language, LiDAR and image data, the transformer
network architecture has proven itself to be effective in a plurality of domains (see
[48] as a strong example of this). It has even proven to be an applicable architecture
for our particular task when a transformer based network, called the Swin Trans-
former [49], won a semantic segmentation challenge using the very same Wood-
Scape dataset [50]. With further research into the computational efficiency of the
methods we have previously explored, it would be interesting to compare these to
both transformers and deformable convolution methods.

104



Bibliography

[1] S. K. Yogamani, C. Hughes, J. Horgan, et al., “WoodScape: A multi-
task, multi-camera fisheye dataset for autonomous driving,” CoRR,
vol. abs/1905.01489, 2019. arXiv: 1905.01489. [Online]. Available: http:
//arxiv.org/abs/1905.01489.

[2] R. Wood, “XXIII. Fisheye views, and vision under water,” The London, Edin-
burgh, and Dublin Philosophical Magazine and Journal of Science, vol. 12,
no. 68, pp. 159–162, 1906. DOI: 10.1080/14786440609463529. eprint:
https://doi.org/10.1080/14786440609463529. [Online]. Available:
https://doi.org/10.1080/14786440609463529.

[3] P. Hu, J. Yang, L. Guo, X. Yu, and W. Li, “Solar-tracking methodology based
on refraction-polarization in Snell’s window for underwater navigation,” Chi-
nese Journal of Aeronautics, vol. 35, no. 3, pp. 380–389, 2022, ISSN: 1000-
9361. DOI: https://doi.org/10.1016/j.cja.2021.02.011. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S1000936121000704.

[4] Wikipedia contributors, Snell’s window — Wikipedia, the free encyclopedia,
[Online; accessed 27-March-2023], 2021. [Online]. Available: https://
en.wikipedia.org/w/index.php?title=Snell%27s_window&oldid=
1060137509.

[5] X. Ying, Z. Hu, and H. Zha, “Fisheye Lenses Calibration Using Straight-Line
Spherical Perspective Projection Constraint,” in Computer Vision – ACCV
2006, P. J. Narayanan, S. K. Nayar, and H.-Y. Shum, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 61–70, ISBN: 978-3-540-32432-4.

[6] X. Shouzhang and W. Fengwen, “Generation of Panoramic View from 360
Degree Fisheye Images Based on Angular Fisheye Projection,” Oct. 2011.
DOI: 10.1109/DCABES.2011.49.

105

https://arxiv.org/abs/1905.01489
http://arxiv.org/abs/1905.01489
http://arxiv.org/abs/1905.01489
https://doi.org/10.1080/14786440609463529
https://doi.org/10.1080/14786440609463529
https://doi.org/10.1080/14786440609463529
https://doi.org/https://doi.org/10.1016/j.cja.2021.02.011
https://www.sciencedirect.com/science/article/pii/S1000936121000704
https://www.sciencedirect.com/science/article/pii/S1000936121000704
https://en.wikipedia.org/w/index.php?title=Snell%27s_window&oldid=1060137509
https://en.wikipedia.org/w/index.php?title=Snell%27s_window&oldid=1060137509
https://en.wikipedia.org/w/index.php?title=Snell%27s_window&oldid=1060137509
https://doi.org/10.1109/DCABES.2011.49


BIBLIOGRAPHY

[7] Y. Xiong and K. Turkowski, “Creating image-based VR using a self-
calibrating fisheye lens,” in Proceedings of IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, 1997, pp. 237–243. DOI:
10.1109/CVPR.1997.609326.

[8] S. Urban, J. Leitloff, S. Wursthorn, and S. Hinz, “Self-Localization of a
Multi-Fisheye Camera Based Augmented Reality System in Textureless 3d
Building Models,” ISPRS Annals of Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. 1, pp. 43–48, Oct. 2013. DOI: 10.5194/
isprsannals-II-3-W2-43-2013.

[9] A. R. Sekkat, Y. Dupuis, V. R. Kumar, et al., “SynWoodScape: Synthetic
Surround-View Fisheye Camera Dataset for Autonomous Driving,” IEEE
Robotics and Automation Letters, vol. 7, no. 3, pp. 8502–8509, Jul. 2022.
DOI: 10.1109/lra.2022.3188106. [Online]. Available: https://doi.
org/10.1109%2Flra.2022.3188106.

[10] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” CoRR, vol. abs/1506.02640,
2015. arXiv: 1506.02640. [Online]. Available: http://arxiv.org/abs/
1506.02640.

[11] Z. Zhao, P. Zheng, S. Xu, and X. Wu, “Object Detection with Deep Learning:
A Review,” CoRR, vol. abs/1807.05511, 2018. arXiv: 1807.05511. [Online].
Available: http://arxiv.org/abs/1807.05511.

[12] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object Detection in 20 Years: A Survey,”
CoRR, vol. abs/1905.05055, 2019. arXiv: 1905.05055. [Online]. Available:
http://arxiv.org/abs/1905.05055.

[13] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A Review of Yolo Algorithm
Developments,” Procedia Computer Science, vol. 199, pp. 1066–1073, 2022,
The 8th International Conference on Information Technology and Quanti-
tative Management (ITQM 2020 2021): Developing Global Digital Econ-
omy after COVID-19, ISSN: 1877-0509. DOI: https://doi.org/10.
1016 / j . procs . 2022 . 01 . 135. [Online]. Available: https : / / www .
sciencedirect.com/science/article/pii/S1877050922001363.

[14] F. Sultana, A. Sufian, and P. Dutta, “A Review of Object Detection Models
based on Convolutional Neural Network,” CoRR, vol. abs/1905.01614, 2019.
arXiv: 1905.01614. [Online]. Available: http://arxiv.org/abs/1905.
01614.

[15] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hier-
archies for accurate object detection and semantic segmentation,” CoRR,
vol. abs/1311.2524, 2013. arXiv: 1311.2524. [Online]. Available: http:
//arxiv.org/abs/1311.2524.

106

https://doi.org/10.1109/CVPR.1997.609326
https://doi.org/10.5194/isprsannals-II-3-W2-43-2013
https://doi.org/10.5194/isprsannals-II-3-W2-43-2013
https://doi.org/10.1109/lra.2022.3188106
https://doi.org/10.1109%2Flra.2022.3188106
https://doi.org/10.1109%2Flra.2022.3188106
https://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1807.05511
http://arxiv.org/abs/1807.05511
https://arxiv.org/abs/1905.05055
http://arxiv.org/abs/1905.05055
https://doi.org/https://doi.org/10.1016/j.procs.2022.01.135
https://doi.org/https://doi.org/10.1016/j.procs.2022.01.135
https://www.sciencedirect.com/science/article/pii/S1877050922001363
https://www.sciencedirect.com/science/article/pii/S1877050922001363
https://arxiv.org/abs/1905.01614
http://arxiv.org/abs/1905.01614
http://arxiv.org/abs/1905.01614
https://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524


BIBLIOGRAPHY

[16] C. Szegedy, W. Liu, Y. Jia, et al., “Going Deeper with Convolutions,” CoRR,
vol. abs/1409.4842, 2014. arXiv: 1409.4842. [Online]. Available: http:
//arxiv.org/abs/1409.4842.

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
large-scale hierarchical image database,” in 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, 2009, pp. 248–255. DOI: 10.1109/
CVPR.2009.5206848.

[18] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” CoRR,
vol. abs/1612.08242, 2016. arXiv: 1612.08242. [Online]. Available: http:
//arxiv.org/abs/1612.08242.

[19] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” CoRR,
vol. abs/1804.02767, 2018. arXiv: 1804.02767. [Online]. Available: http:
//arxiv.org/abs/1804.02767.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[21] G. Jocher, YOLOv5 by Ultralytics, version 7.0, May 2020. DOI: 10 .
5281/zenodo.3908559. [Online]. Available: https://github.com/
ultralytics/yolov5.

[22] H. Rashed, E. Mohamed, G. Sistu, et al., “Generalized Object Detection
on Fisheye Cameras for Autonomous Driving: Dataset, Representations and
Baseline,” CoRR, vol. abs/2012.02124, 2020. arXiv: 2012.02124. [Online].
Available: https://arxiv.org/abs/2012.02124.

[23] J. H. Hosang, R. Benenson, and B. Schiele, “Learning non-maximum sup-
pression,” CoRR, vol. abs/1705.02950, 2017. arXiv: 1705.02950. [Online].
Available: http://arxiv.org/abs/1705.02950.

[24] Y.-C. Su and K. Grauman, “Kernel transformer networks for compact spher-
ical convolution,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Jun. 2019.

[25] O. Ahmad and F. Lecue, FisheyeHDK: Hyperbolic Deformable Kernel
Learning for Ultra-Wide Field-of-View Image Recognition, 2022. DOI: 10.
48550/ARXIV.2203.07255. [Online]. Available: https://arxiv.org/
abs/2203.07255.

[26] J. W. Anderson, “Other Models of the Hyperbolic Plane,” in Hyperbolic Ge-
ometry. London: Springer London, 1999, pp. 95–110, ISBN: 978-1-4471-
3987-4. DOI: 10.1007/978- 1- 4471- 3987- 4_4. [Online]. Available:
https://doi.org/10.1007/978-1-4471-3987-4_4.

107

https://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://doi.org/10.5281/zenodo.3908559
https://doi.org/10.5281/zenodo.3908559
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://arxiv.org/abs/2012.02124
https://arxiv.org/abs/2012.02124
https://arxiv.org/abs/1705.02950
http://arxiv.org/abs/1705.02950
https://doi.org/10.48550/ARXIV.2203.07255
https://doi.org/10.48550/ARXIV.2203.07255
https://arxiv.org/abs/2203.07255
https://arxiv.org/abs/2203.07255
https://doi.org/10.1007/978-1-4471-3987-4_4
https://doi.org/10.1007/978-1-4471-3987-4_4


BIBLIOGRAPHY

[27] J. W. Anderson, “The General Möbius Group,” in Hyperbolic Geometry.
London: Springer London, 1999, pp. 19–56, ISBN: 978-1-4471-3987-4. DOI:
10.1007/978-1-4471-3987-4_2. [Online]. Available: https://doi.
org/10.1007/978-1-4471-3987-4_2.

[28] L. Deng, M. Yang, H. Li, T. Li, B. Hu, and C. Wang, “Restricted De-
formable Convolution based Road Scene Semantic Segmentation Using Sur-
round View Cameras,” 2018. DOI: 10.48550/ARXIV.1801.00708. [On-
line]. Available: https://arxiv.org/abs/1801.00708.

[29] H. Gao, X. Zhu, S. Lin, and J. Dai, Deformable Kernels: Adapting Effective
Receptive Fields for Object Deformation, 2019. DOI: 10.48550/ARXIV.
1910.02940. [Online]. Available: https://arxiv.org/abs/1910.
02940.

[30] Z. Duan, O. Tezcan, H. Nakamura, P. Ishwar, and J. Konrad, “RAPiD:
Rotation-Aware People Detection in Overhead Fisheye Images,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR) Workshops, Jun. 2020.

[31] C. Huynh, A. T. Tran, K. Luu, and M. Hoai, “Progressive Semantic Segmen-
tation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Jun. 2021, pp. 16 755–16 764.

[32] L. Li, T. Zhou, W. Wang, J. Li, and Y. Yang, “Deep Hierarchical Semantic
Segmentation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Jun. 2022, pp. 1246–1257.

[33] Á. Sáez, L. M. Bergasa, E. López-Guillén, et al., “Real-Time Semantic Seg-
mentation for Fisheye Urban Driving Images Based on ERFNet,” Sensors,
vol. 19, no. 3, 2019, ISSN: 1424-8220. DOI: 10.3390/s19030503. [Online].
Available: https://www.mdpi.com/1424-8220/19/3/503.

[34] E. Romera, J. M. Álvarez, L. M. Bergasa, and R. Arroyo, “ERFNet: Efficient
Residual Factorized ConvNet for Real-Time Semantic Segmentation,” IEEE
Transactions on Intelligent Transportation Systems, vol. 19, no. 1, pp. 263–
272, 2018. DOI: 10.1109/TITS.2017.2750080.

[35] M. Cordts, M. Omran, S. Ramos, et al., “The Cityscapes Dataset for Seman-
tic Urban Scene Understanding,” CoRR, vol. abs/1604.01685, 2016. arXiv:
1604.01685. [Online]. Available: http://arxiv.org/abs/1604.01685.

[36] Amazon. “Amazon Elastic Compute Cloud: User Guide for Linux Instances.”
(), [Online]. Available: https : / / docs . aws . amazon . com / AWSEC2 /
latest/UserGuide/concepts.html. (accessed: 13.12.2022).

[37] Amazon. “Amazon Machine Images AMI.” (), [Online]. Available: https:
//docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html.
(accessed: 13.12.2022).

108

https://doi.org/10.1007/978-1-4471-3987-4_2
https://doi.org/10.1007/978-1-4471-3987-4_2
https://doi.org/10.1007/978-1-4471-3987-4_2
https://doi.org/10.48550/ARXIV.1801.00708
https://arxiv.org/abs/1801.00708
https://doi.org/10.48550/ARXIV.1910.02940
https://doi.org/10.48550/ARXIV.1910.02940
https://arxiv.org/abs/1910.02940
https://arxiv.org/abs/1910.02940
https://doi.org/10.3390/s19030503
https://www.mdpi.com/1424-8220/19/3/503
https://doi.org/10.1109/TITS.2017.2750080
https://arxiv.org/abs/1604.01685
http://arxiv.org/abs/1604.01685
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html


BIBLIOGRAPHY

[38] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese,
“Generalized Intersection over Union,” Jun. 2019.

[39] P. Henderson and V. Ferrari, “End-to-End Training of Object Class Detectors
for Mean Average Precision,” Mar. 2017, pp. 198–213, ISBN: 978-3-319-
54192-1. DOI: 10.1007/978-3-319-54193-8_13.

[40] Y. Sasaki, “The truth of the F-measure,” Teach Tutor Mater, Jan. 2007.

[41] V. R. Kumar, WoodScape, https://github.com/valeoai/WoodScape,
2019.

[42] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, 2004. DOI: 10 . 1017 /
CBO9780511811685.

[43] P.-E. Sarlin, M. Dusmanu, J. L. Schönberger, et al., “LaMAR: Benchmarking
Localization and Mapping for Augmented Reality,” in ECCV, 2022.

[44] R. Padilla, S. L. Netto, and E. A. B. da Silva, “A Survey on Performance
Metrics for Object-Detection Algorithms,” in 2020 International Conference
on Systems, Signals and Image Processing (IWSSIP), 2020, pp. 237–242.
DOI: 10.1109/IWSSIP48289.2020.9145130.

[45] K. Oksuz, B. C. Cam, E. Akbas, and S. Kalkan, “Localization Recall Pre-
cision (LRP): A New Performance Metric for Object Detection,” in Com-
puter Vision – ECCV 2018, V. Ferrari, M. Hebert, C. Sminchisescu, and Y.
Weiss, Eds., Cham: Springer International Publishing, 2018, pp. 521–537,
ISBN: 978-3-030-01234-2.

[46] D. Powers and Ailab, “Evaluation: From precision, recall and F-measure to
ROC, informedness, markedness & correlation,” J. Mach. Learn. Technol,
vol. 2, pp. 2229–3981, Jan. 2011. DOI: 10.9735/2229-3981.

[47] Shimon Even, Graph Algorithms, 2nd ed., Guy Even, Ed. Cambridge, Eng-
land: Cambridge University Press, Sep. 2011.

[48] D. Driess, F. Xia, M. S. M. Sajjadi, et al., PaLM-E: An Embodied Multimodal
Language Model, 2023. arXiv: 2303.03378 [cs.LG].

[49] Z. Liu, Y. Lin, Y. Cao, et al., Swin Transformer: Hierarchical Vision Trans-
former using Shifted Windows, 2021. arXiv: 2103.14030 [cs.CV].

[50] S. Ramachandran, G. Sistu, J. McDonald, and S. Yogamani, WoodScape
Fisheye Semantic Segmentation for Autonomous Driving – CVPR 2021 Om-
niCV Workshop Challenge, 2021. arXiv: 2107.08246 [cs.CV].

109

https://doi.org/10.1007/978-3-319-54193-8_13
https://github.com/valeoai/WoodScape
https://doi.org/10.1017/CBO9780511811685
https://doi.org/10.1017/CBO9780511811685
https://doi.org/10.1109/IWSSIP48289.2020.9145130
https://doi.org/10.9735/2229-3981
https://arxiv.org/abs/2303.03378
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2107.08246

	Title Page
	Contents
	Introduction
	Aim of the Thesis
	Fisheye Images
	WoodScape Dataset
	Analysis of the WoodScape Dataset
	Structure of the Thesis

	Background
	Object Detection with YOLO
	Object Detection for Fisheye Datasets
	Semantic Segmentation for Fisheye Datasets
	Amazon Web Services Elastic Compute Cloud

	Methods
	4th-Order Polynomial Mapping
	Cylindrical Mapping
	Rectilinear Mapping
	Tiled Mapping
	Intersection over Union (IoU)
	Mean Average Precision (mAP)
	F1 Score

	Object Detection
	Making WoodScape Compatible with YOLOv5
	Conversion of the Bounding Box Coordinates
	Original Dataset
	Cylindrical Rectification
	Rectilinear Rectification

	Semantic Segmentation
	Pre-Processing the Annotations
	Original Dataset
	Cylindrical Rectification
	Rectilinear Rectification
	Analysis of Segmentation Results
	Fair Model Comparison

	Tiled Rectification
	Introduction
	Adapting the Annotations
	YOLO Results
	Tile Merging

	Conclusion and Discussion
	Summary of Experiments
	Future Work

	Bibliography

