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Abstract

As smart watches becoming a common accessory among consumers, new opportunities
arise in the activity recognition space. Machine Learning tools have the potential to
reference both wrist and hip motion simultaneously by combining smart watch and phone
accelerometer data. The combination of the two data streams are explored as a potentially
major improvement to activity recognition accuracy with improved sensitvity to more
nuanced activities such as eating soup versus eating a sandwich. The dataset provided
for this project comes from the WISDM Labratories and is offered as public domain.
NAME THE FEATURES. AND MODELS USED. AND THEN WRAP UP QUICKLY
WITH RESULTS!

1 Introduction

Activity recognition has many applications in the health and wellness sector. Being able to
detect certain conditions quickly can be critical to the effectiveness of the respective treatment
measures like is with the case of Parkinson’s disease [6].

With the advent of Microelectromechanical Systems(MEMS), information about the linear
and angular acceleration of an object in discrete time can be obtained using a silicon wafer small
enough to fit on the back of a human nail [7]. Inclusion of such sensors has become ubiquitous
in mobile electronic devices and has led to an explosion in the amount of accerlation and
gyroscopic data available. The raw signals coming from these sensors can be used used by
machine learning algorithms to perform activity recogninition, giving abstract and superficial
discrete time data meaning. These algorithms can be tailored to detect discrete activities
such as a tremor in the hand which might be associated with Parkinson’s disease, providing
advanced diagnosis as discussed earlier.

The objective of this project is to use the digital signals provided by these MEMS sensors
to determine the types of activities being conducted by their users. Multiple machine learning
models are used for the classification of activities including: k-Nearest Neighbors, Random
Forests, Support Vector Machines and Linear and Quadtratic Discriminant Analysis.

The dataset being used for this project comes from the WISDM Lab and has been made
available under public domain [8]. It is a compilation of raw accelerometer and gyroscopic
data recorded from both the phone and watch simultaneously. The dataset has over 45 million
datapoints across 51 different subjects each performing 18 different activities. This vast dataset
provides more than enough information however it being a raw data signal, key statistical and
frequency domain features must be extracted in order to improve interpitability.



Table 1: The first four samples of the dataframe in order to see it’s structure

1 2 3 4
User 1600 1600 1600 1600
Activity A A A A

Time 252207.7 252207.7 252207.8 252207.8

Phone Acceleration
PAX  -0.3647613 -0.8797302 2.0014954  0.4506226
PAY  8.793503 9.768784 11.109070  12.651642
PAZ  1.055084 1.016998 2.619156 0.184555

Phone Gyroscope
PGX -0.8532104 -0.8751373 -0.7201691 -0.5716400
PGY 0.29722595 0.01547241 0.38848877 1.22740170
PGZ 0.8901825 0.1622314  -0.2840118 -0.2416687

Watch Acceleration
WAX  7.091625 4.972757 3.253720 2.801216
WAY -0.5916671 -0.1583166 -0.1918354 -0.1559224
WAZ 8.195502 6.696732 6.107758 5.997625

Watch Gyroscope
WGX  0.31494410 0.38738210 0.07099854 0.03797535
WGY -1.0222765 -0.6185412 -0.2094797 0.2549756
WGZ -0.3099616 -0.0489718 -0.1959783 -0.1565635

2 Methodology

First the data was compiled into a dataframe that contained roughly 80 percent of all available
data. This was the result of making sure all recorded activities had the same number of
samples. Increasing the symmetry of the data allowed me to collect it into one dataframe with
over three million rows, streamlining the feature engineering process. Time data was removed
and instead it was simply assumed that samples were recorded at exactly 20Hz. The structure
of the dataframe can see in the above table with acceleration and gyroscopic data in three axes
for both the watch and mobile phone. Some simple graphical analysis is done below to better
understand our data.



Exploratory Data Analysis

In order to become familiar with the data and understand its characteristics I made several
plots and in so doing, was able to determine applicable methods for distinguishing the different
activities. Figure 1 shows a tiny snippet of the dataset we are working with and is displayed in
true Digital Signal Processing format. In this particular example we can notice the clapping
signal has some strong outliers which is likely due to the sudden change in velocity once the
hands collide to make the clap noise. The walking signal on the other hand is much smoother

and does not have the same abrupt behaviour.

In Figure 2 it becomes clear that different activities can have different signatures. Some of
the distributions are bimodal while most others are unimodal. This quality is measured later

in the Feature Engineering section below.
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Figure 1: Discrete time signal of two different activities recorded across one second in time. Notice the
sudden bursts in the clapping data versus the walking data.

deceleration after your hands strike when clapping.

This can likely be attributed to the intense
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Figure 2: Density plot of all activities for all users. The various colors represent the different activities.

While the various activities seem to be somewhat unique when looking at their histrograms,
it is important to remember that different users will have the device oriented in different ways
with respect to themselves and Earth’s acceleration. For example, we can see a high degree
of variance between histrograms of standing data produced by twenty different test subjects
in Figure 3. These large differences highlight the necessity for orientation agnostic features.
That is, information about a particular dataset (or feature) whose value will remain the same,
independent of the devices orientation during the activity.

From these plots it is clear that there is a lot of work that has to be done in order to create
distinguishable features that our various models can use in order to categorize the eighteen

different activities. This is where feature engineering becomes critical and is discussed in the
next section.
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Figure 3: Density plot of all the test subjects’ x-axis acceleration data while standing. The various colors
represent the different test subjects.

Feature Engineering

When applying the feature engineering, sequential windows of the dataframe were examined
and various statistics and functions were applied to them, transforming a sequence of rows into
a single row of many different values. These values will be the predictors in our models. The

windowing process is visualized in Figure 4 and a custom function was written in R for this
particular task.

Discrete Time Signal

| | | | | | ! | | | ! | | | | | | | | | | ! | ! | L N
L B e e

Il
i Window 1
> { Window 2

by : 100 samples I { Window 3

\/—/ """"""""""""

window : 200 samples

Figure 4: Diagram explaining the windowing process applied to the raw dataframe during the feature
engineering process. A series of functions are applied to each window and the resultant values become the
relevant features used by our models.

In total eight different features were used and applied to all twelve signals listed in Table
1. Some features would return a value for each respective signal and others would return a



subset of values, one for each sensor for example. The eight features were mean, variance, axis
correlation, integral, extrema, max frequency, spectral energy and the dip test. The use of
some of these features was inspired by other peoples work in the area [12] [4] and others like
the dip test were the result of my own curiosity. The eight features are explained in closer
detail below.

Mean - This feature is not orientation agnostic but was too powerful to ignore with ac-
curacy dropping when excluded as a predictor. While different people will wear devices in
different orientations there seems to be some regularity in orientation. For example a mo-
bile phone worn in someone’s pant pocket is typically not oriented with the screen parallel
to Earth’s surface. It is much more likely their phone screen is parallel to their leg in that
scenario. This consistency is likely why the mean feature has some importance as a predictor.

Variance - A metric that helps explain how spread out numbers in a dataset are, the
variance is calculated as the averaged sum of the squared difference between each observation
and the mean of all the observations. The square root of the variance gives the standard
deviation and the two should not be used simultaneously as predictors for this reason. Highly
correlated predictors will only reduce a models accuracy and should be avoided.

Axis Correlation - There are many ways to calculate correlation and in this case the
Kendall’s correlation coefficient was used as it is less sensitive to outliers [3]. Correlation
between axes is helpful for distinguishing activities that occur primarily in one dimension like
walking forwards versus multiple dimensions, such as climbing a flight of stairs [11].

Integral - The integration of the the acceleration yields velocity and the integration of
velocity yields position. Unfortunately this cannot be directly applied to each component
acceleration with the expectation of understanding the net, point to point distance that the
user traveled since the angle of the device is variable and must be taken into consideration.
These calculations can become considerably complex and so only the double integral of each
axis acceleration was computed. These values can still be helpful in understanding the distance
the device traveled in each of its local axes.

Extrema - The extrema are calculated by subtracting the maximum and minimum obser-
vations from the mean and selecting the largest absolute value from the two. The extrema is
made relative to the mean in an attempt to make the feature orientation agnostic and seeks
to identify sudden jerks in the sensors that might be indicative of specific activities such as
clapping as seen in right-hand plot of Figure 1.

Max Frequency - The maximum frequency of the signal is found by first performing a
Fourier Transform to the 200 sample window. This converts the signal from a time domain
to a frequency domain. The frequency with the most strength is then selected and used as a



feature for that particular window. A demonstration of this is provided in Figure 5. In this
particular it is quite clear that this is a strong frequency of approximately 12 Hz throughout
the digital signal illustrated in the left-hand plot.

Spectral Energy - The spectral energy is another feature found by transforming the signal
from the time domain to the frequency domain. It is the squared sum of the spectral coefficients
and is normalized by the window length [4|. The spectral energy tries to explain the amount
of energy put into the sensor and can be helpful in detecting high intensity activities [9].

Dip Test - There are many different tests for multi-modality in a distribution but the
Hartigan Dip Test offers a novel approach which does not yield false positives when the distri-
bution is heavily skewed [5]. The Hartigan dip test produces a value between 0 and 1 where a
high value gives a strong indication for deviation from unimodality [1]. This feature ended up
being the least important when predicting the various activities and was eventually removed
in order to improve accuracy.
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Figure 5: Example of a fourier transform applied to a ten second window of someone brushing their teeth.

Not all features were equally useful and as it turns out the Hartigan Dip Test was sub-
stantially less important than all the other features as will be revealed in the Results and
Discussion section. Now that we have the final feature dataset it can be applied to our various
models and their accuracies can be compared.



Modeling

Six different models were used for this project with varying success. The six models include
Quadratic Discriminant Analysis, k-Nearest Neighbors, Random Forest and three Support
Vectors Machines, each using a different kernel: Linear, Polynomial and Radial. As testing
progressed it became clear that the Random Forest was performing much better than the
others in predicting all eighteen activities however the other five models also performed well
when only distinguishing between two activities.

Accuracies were validated using the k-Fold Cross Validation technique. A special function
was used for splitting the data into k folds so that it was done by subsets of users and not
individual data points. By doing this we are able to test the versatility of our models when
faced with user data it has never seen before. Had this not been implemented our accuracies
would have likely been much higher.

3 Results and Discussion

In Table 2 you will find the accuracies of the six outlined models when applied to the full
dataset and asked to classify all eighteen activities. As we can see the Random Forest model
performed the best but was only able to reach an accuracy of around 70%. This accuracy is
not high enoough for our model to be used in a real world aplication and would need further
improvement. Some improvements are discussed in the Conclusion section below.

Table 2: Classification of all activities

Accuracy
QDA 53.96%
KNN 54.89%
SVM-Linear 62.78%
SVM-Polynomial 59.67%
SVM-Radial 65.77%
RF 70.47%

In Table 3 classification between various sets of only two different activities is performed
and here we see the accuracies have improved significantly. Noticing the differences between
someone’s watch acclerlerometer while writing versus clapping is much easier than distinguish-
ing between different eating activities as shown in Table 4. The three activities classified in
Table 4 were eating soup, eating chips and eating pasta and eating a sandwich. Differences in
the digital signals of these three activities are likely very nuanced and hard to seperate into
different categories. In this particular case, finding features that can highlight the differences
between such activities might be a task better suited for a deep learning neural network.



A confusion matrix is provided in Table 5 along with an activity key code in Table 6. This
confusion matrix show good performance for the classification of many activities but falls short
when classifying the three different eating activities aswell as drinking from a cup.

Table 3: Classification of Writing vs. Clapping

Accuracy
QDA 94.12%
KNN 92.1%
SVM-Linear 93.35%
SVM-Polynomial 95.64%
SVM-Radial 96.47%
RF 97.24%

Table 4: Classification of the four types of Eating

Accuracy
QDA 43.72%
KNN 44.47%
SVM-Linear 53.43%
SVM-Polynomial 51.09%
SVM-Radial 54.81%
RF 56.51%

Finally, by using the importance tool in the Random Forest library 'randomForest’, we
can get a nice visual representation of the varying importance for our predictors, as in Figure
6, and perhaps glean information about which types of predictors perform the best. The
importance is obtained by measuring the reduction in impurity after using a given predictor
at any node across all trees. The first thing to notice, and what T found most surprising, was
that the mean for all three axes of the watch accelerometer were the three most important
predictors. This clearly points to a certain consistency in the orientation of the watch across
users which would make sense considering there aren’t many ways a watch can be worn. One
additional explanation for this could be the fact that only one smartwatch model was used
across all 51 users. Using the same watch model means that the accelerometers orientation
with respect to the users wrist will be consistent across all users. Conversely, the mobile phones
used for the dataset varied between three different models and each model is likely to have
their accelerometer oriented in a different fashion resulting in less consistent orientation and
thereby less important mean axial acceleration predictors.
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Figure 6: This plot helps visualize the importance of the different predictors. Interestingly the mean watch
acceleration in the x-axis is the the most important. This indicates that orientation agnostic data might not
be so critical for the watch. This would make sense since there are not many different ways a watch can be
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Table 5: Confusion Matrix of the Random Forest model applied to all Activities

A B C D E F G H I J K L M (0] P Q R class.error
A 122 0 18 0 0 0O 0O 0O 0O 0 0 0 28 2 0 0 1 00385523
B 71264 7 0O 0O O O O O 0O 0O O 2 0 0 0 0 00125000
C 20 40 1097 0 0O O O 0O O 0 0O 0 5 5 0 0 0 00978618
D 3 3 23 1140 4 18 5 11 3 12 6 15 17 2 0 16 6 0.1310976
E o o0 4 61201 6 4 6 11 5 5 10 16 3 0 2 1 00617188
F o o0 2 23 5118 2 1 12 5 1 3 2 0 0 5 1 0049679
G o o 1 3 7 0128 1 12 5 3 4 7 1 1 1 8 0041158
H o0 o0 1 4 5 0 18 1179 20 43 12 14 9 0 0 6 1 01013720
I o 0 1 20 12 3 2 27 1135 30 37 30 10 1 0 3 1 01349085
J o 0 0 7 4 5 0 3 2 112 7 25 7 1 0 13 3 01089744
K o0 o0 1 20 5 5 2 16 46 15 1158 29 5 0 0 9 0 01173780
L o 0 5 20 6 5 5 27 6T 47 52 9% 7T 0 0 8 0 02003205
M 0 4 3 0 1 0 0O 0 0 0 0 1 1254 14 3 0 0 00442073
0 1 3 1 0o 2 0 0O I 1 0 0 0 151254 2 0 0 00203125
P o 0o 3 0o 1 0 0O 1 0 0 0 2 16 35 1253 0 1 0.0449695
Q o0 o 1 10 2 0o 2 2 3 & 2 3 10 16 21 1196 4 0.0656250
R 5 2 9 0o 0 o0 6 1 1 1 0 1 9 5 3 0 130 00317812

Table 6: Activity Key Code

Activity Code

Walking A

Jogging B

Stairs C

Sitting D

Standing E

Typing F

Brushing Teeth G

Eating Soup H

Eating Chips I

Eating Pasta J

Drinking from Cup K

Eating Sandwich L

Kicking (Soccer Ball) M

Playing Catch/Tennis Ball O

Dribbling (Basketball) P

Writing Q

Clapping R

Folding Clothes S
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4 Conclusion

In this project we have covered all aspects of the machine learning process from exploratory
data analysis to feature generation, model making, tuning and analysis of results. The initial
ideas about creating orientation agnostic features turned out to be less critical than intially
forecasted. With the added support of consistently oriented devices our models would likely
become far more accurate.

My hypothesis that variable orientation might hurt the model making process was some-
what misfounded and the mean predictors ended up being some of the most important predic-
tors created. One advantage of the mean predictors is their ability to remove noise. Taking the
mean across a signal will quiet any of the noise that might appear either by the surrounding
electronics or due to vibrations or temperature fluctuations effecting the mechanical behaviour
of the sensor [2].

It should come as no surprise that the Random Forest performed the best when asked to
classify all the different activities. Random Forests are very versatile when higher dimension
datasets are used like the one created for this project. Because random subsets of the predictors
are used when creating each new tree, the forest becomes decoupled thus reducing the variance
in averaged accuracy across trees and improving reliability.

Other models might have better success with detecting the more nuanced activities such
as the consumption of different foods. A deep learning neural network for example, would be
able to create it’s own instructions for detecting these activities and has been quiet successful
in other studies [13] [10].
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